Matrices

10.1. Matrix

Definition. An arrangement of $m n$ numbers belonging to a number system F (real or complex) into m rows and n columns is called a matrix. of order $m \times n$ over F.
(K.U. 1981)

For example :
(i) $\left[\begin{array}{rrc}2 & -3 & i \\ 3 & 8 & 6+2 i\end{array}\right]$ is a matrix of order 2×3,
as it has two rows and three columns.
(ii) $\left[\begin{array}{rrr}1 & 8 & -7 \\ 2 & 5 & 6 \\ i+2 & 0 & 4\end{array}\right]$ is a matrix of order 3×3.
(iii) In general a matrix of order $m \times n$ can be written as

$$
\left[\begin{array}{lll}
a_{11} & a_{12} \ldots \ldots . . & a_{1 n} \\
a_{21} & a_{22} \ldots \ldots . & a_{2 n} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \\
a_{i 1} & a_{i 2} \ldots \ldots & a_{i n} \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \\
\ldots \ldots \ldots \ldots \ldots \ldots . . \\
a_{m 1} & a_{m 2} & \ldots \ldots
\end{array}\right]
$$

which can be briefly written as $\left[a_{i j}\right]_{m \times n}$.
Note 1. We shall denote a matrix by capital latters, $\mathrm{A}, \mathrm{B}, \mathrm{C} \ldots \ldots$. etc.
2. The element $a_{i j}$ is that which occurs in the i th row and j th col. The first suffix indicates row number, while the second suffix indicates the col. number.
3. Members of the number system F are called scalars relative to the matrix.
4. The elements $a_{11}, a_{22}, a_{33}, \ldots . ., a_{n n}$ in which both suffixes are same, are called the diagonal elements, all other are called non-diagonal elements.

Thus $a_{i j}$ is a diagonal element if $i=j$
$a_{i j}$ is non-diagonal elements if $i \neq j$.
5. The line along which the diagonal elements.
$a_{11}, a_{22}, \ldots . ., a_{n n}$ lie is called the Principal Diagonal.

10.2. Different Types of Matrices

1. Zero Matrix or Null Matrix. A matrix each of whose element is zero is called a zero matrix or null matrix.
e.g., $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ or $\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$ or $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
are zero matrices respectively of order $2 \times 3 ; 3 \times 2$ and 3×3.
In general, a zero matrix of order $m \times n$ is denoted by $\mathrm{O}_{m \times n}$.
Note. A matrix which is not a zerob-matrix is called a non-zero matrix
2. Square matrix. A matrix in which the number of rows is equal to the number of columns is called a Square matrix.

A square matrix of order $n \times n$ called square matrix of order $n . m=n$
A matrix which is not square is called a rectangular matrix. $m \neq n$
3. Row-matrix or Row-Vector. A matrix of type $1 \times n$ i.e., having only one row is called a row-matrix. For example, $[1,-3,-7, i, 0]$ is a rowmatrix of order 1×5.
(M.D.U. 1983)
4. Column-matrix or Column-vector. A matrix of type $m \times 1$ i.e., having only one column is called a column-matrix.
(M.D.U. 1983)

For example, $\left[\begin{array}{l}1 \\ 7 \\ 8\end{array}\right]$ is a column matrix of order 3×1.
5. Diagonal Matrix. A square matrix in which all non-diagonal elements are zerọ is called a diagonal matrix.

In symbols. The matrix $\mathrm{A}=\left[a_{i j}\right]_{n \times n}$ is diagonal matrix if $a_{i j}=0$ for $i \neq j$. Thus

$$
\left[\begin{array}{rr}
2 & 0 \\
0 & -8
\end{array}\right],\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -5 & 0 \\
0 & 0 & 0
\end{array}\right] \text { are diagonal matrices. }
$$

$\frac{\text { Note. The diagonal matrix }}{\text { al }\left[x_{1}, x_{2}, x_{3}\right] \text {. }}\left[\begin{array}{rrr}x_{1} & 0 & 0 \\ 0 & x_{2} & 0 \\ 0 & 0 & x_{3}\end{array}\right]$ can be b́riefly written as diagonal $\left[x_{1}, x_{2}, x_{3}\right]$.
6. Scalar Matrix. A diagonal matrix in which all diagonal elements are equal is called a scalar matrix.
7 In symbols. The square matrix $\mathrm{A}=\left[a_{i j}\right]_{n \times n}$ is a scalar matrix if $a_{i j}=0$ $(i \neq j)$ and $a_{i j}=k$ for $i=j$.
e.g. $\quad\left[\begin{array}{rrr}-2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2\end{array}\right]$ is a scalar matrix.
7. Unit Matrix or Identity Matrix. A scalar matrix of order n in which all diagonal elements are unity is called a unit or identity matrix and is generally denoted by I_{n}.
(M.D.U. 1983)

In Symbols. A square matrix $\mathrm{A}=\left[a_{i j}\right]_{n \times n}$ will be a unit or identity matrix if

$$
\text { (i) } \cdot a_{i j}=0 \text { for } i \neq j \text { and } \text { (ii) } a_{i j}=1 \text { for } i=j
$$

8. Tri-angular Matrix. These are of two types :
T (a) Upper-triangular matrix. It is a matrix in which all elements below the principal diagonal are zero

$$
\text { e.g., } \quad\left[\begin{array}{rrr}
1 & -2 & i \\
0 & 5 & -7 \\
0 & 0 & 9
\end{array}\right]
$$

(b) Lower-triangular matrix. It is a matrix in which all elements above the Principal diagonal are zero

$$
\text { e.g., } \quad\left[\begin{array}{rrr}
1 & 0 & 0 \\
-5 & 7 & 0 \\
3 & 8 & 4
\end{array}\right]
$$

9. Sub-matrix. A matrix B obtained by deleting some rows or columns or both of a matrix A, is called a sub-matrix of A.

For example, if $\mathrm{A}=\left[\begin{array}{llll}1 & 2 & 5 & 7 \\ 1 & 3 & 9 & 1 \\ 0 & 0 & 1 & 2\end{array}\right]$, then the matrices

$$
\left[\begin{array}{lll}
1 & 2 & 5 \\
1 & 3 & 9
\end{array}\right],\left[\begin{array}{ll}
2 & 5 \\
3 & 9
\end{array}\right],[0,0,1,2] \text { etc. }
$$

are sub-matrices of A.

10.3. Equality of Matrices

Two matrices $\mathrm{A}=\left[a_{i j}\right]_{m \times n}$ and $\mathrm{B}=\left[b_{i j}\right]_{p \times q}$ are equal, if and only if
(i) they are of the same order i.e. $m=p$ and $n=q$
(ii) their corresponding elements are all equal i.e., $a_{i j}=b_{i j}$ for all i and j.

If A and B are two equal matrices, then we write $A=B$.

10.4. Addition (sum) of two Matrices

We can add two matrices only when they are of the same order and two such matrices are said to be conformable for addition.

Let $\mathrm{A}=\left[a_{i j}\right]_{m \times n}$ and $\mathrm{B}=\left[b_{i j}\right]_{m \times n}$ be two matrices of the same order $m \times n$, then their sum $\mathbf{A}+\mathbf{B}$ is a matrix of the same order $m \times n$ and is obtained by adding the corresponding elements of A and B.

Thus, if $\mathrm{A}=\left[a_{i j}\right]_{m \times n}, \mathrm{~B}=\left[b_{i j}\right]_{m \times n}$, then the sum

$$
\mathrm{A}+\mathrm{B}=\left[a_{i j}\right]_{m \times n}+\left[b_{i j}\right]_{m \times n}=\left[a_{i j}+b_{i j}\right]_{m \times n}
$$

Remarks. The elements of a matrix will be assumed to belong to some number system say of Rationals, Reals or Complex.

10.5. Properties of Matrix Addition

1. Matrix Addition is Commutative. i.e. if A and B are matrices of the same order, then $A+B=B+A$.
(M.D.U. 1983)

Proof. L.H.S. $=\mathrm{A}+\mathrm{B}$

$$
\begin{aligned}
& =\left[a_{i j}\right]_{m \times n}+\left[b_{i j}\right]_{m \times n}=\left[\left(a_{i j}+b_{i j}\right)\right]_{m \times n} \\
& =\left[\left(b_{i j}+a_{i j}\right)\right]_{m \times n}
\end{aligned}
$$

$[\because$ Elements of matrices are commutative
for addition]

$$
=\left[b_{i j}\right]_{m \times n}+\left[a_{i j}\right]_{m \times n}=\mathrm{B}+\mathrm{A}=\text { R.H.S. }
$$

2. Matrix Addition is Associative. If A, B, C be matrices of the same order, then $(A+B)+C=A+(B+C)$.

Proof. L.H.S. $=(A+B)+C$

$$
\begin{aligned}
& =\left(\left[a_{i j}\right]_{m \times n}+\left[b_{i j}\right]_{m \times n}\right)+\left[c_{i j}\right]_{m \times n} \\
& =\left[\left(a_{i j}+b_{i j}\right)\right]_{m \times n}+\left[c_{i j}\right]_{m \times n} \\
& =\left[\left(a_{i j}+b_{i j}\right)+c_{i j}\right]_{m \times n} \\
& =\left[a_{i j}+\left(b_{i j}+c_{i j}\right)\right]_{m \times n}
\end{aligned}
$$

$[\because$ For elements of matrices, addition
is associative]

$$
=\left[a_{i j}\right]_{m \times n}+\left(\left[b_{i j}\right]_{m \times n}+\left[c_{i j}\right]_{m \times n}\right)
$$

$$
=A+(B+C)=\text { R.H.S. }
$$

Note. Because of associative property of addition, we write

$$
(A+B)+C=A+(B+C)=A+B+C
$$

3. Existence of Additive identity. Given any matrix A of order $m \times n$, there exists a matrix O of order $m \times n$, each of whose element is zero such that $\mathrm{A}+\mathrm{O}=\mathrm{A}$.

Note. The zero matrix O is called additive identity or a zero and is unique for a set of all $m \times n$ matrices.
4. Existence of Additive Inverse. Given a matrix A of order $\boldsymbol{m} \times \boldsymbol{n}$; their exists a matrix X also of the same order, so that

$$
A+X=O
$$

This matrix $X=-\left[a_{i j}\right]$ is called additive inverse or Negative of A and we shall denote it by $(-A)$.

Thus if $\mathrm{A}=\left[a_{i j}\right]$, then $-\mathrm{A}=\left[-a_{i j}\right]$.
Proofs of (3) and (4) are left to the reader as an exercise.

A0.6. Subtraction of Two Matrices

Let A and B be two matrices of the same order (type), then subtraction of B from A is written as $A-B$ and is defined as sum of A and - B.

Thus, as $A-B=A+(-B)$
Hence $A-B$ is obtained by subtracting from cach element of A the corresponding element of B
10.7. Multiplication of a Matrix by a Scalar

Let $\mathrm{A}=\left\{a_{i, j}\right\}_{\mathrm{m}} \times$, be any matrix and k any scalar, then the multiplication of A by the scalar k written as $k A$ is a matrix of order $m \times n$ obtained by multiplying each element of A by the scalar k. Thus,

If

$$
\begin{aligned}
\mathrm{A} & =\left[a_{i j}\right]_{m \times n} \text {, then } \\
k \mathrm{~A} & =k\left[a_{i j}\right]_{m \times n}=\left[k \cdot a_{i j}\right]_{m \times n} .
\end{aligned}
$$

For example. If $A=\left[\begin{array}{rrrr}-1 & 2 & 7 & 8 \\ 3 & 4 & -2 & 7 \\ 1 & 2 & 3 & 4 l\end{array}\right]$ is a matrix of order 3×4 and 5 is a scalar, then

$$
5 A=\left[\begin{array}{rrrr}
-5 & 10 & 35 & 40 \\
15 & 20 & -10 & 35 \\
5 & 10 & 15 & 20 i
\end{array}\right]
$$

10.8. Properties of Multiplication of a Matrix by a Scalar

If $\mathrm{A}=\left[a_{i j}\right]$ and $\mathrm{B}=\left[b_{i j}\right]$ be any twe matrices of the same type $m \times n$ and x and y are scalars, then
(i) $x(\mathrm{~A}+\mathrm{B})=x \mathrm{~A}+x \mathrm{~B}$
(ii) $(x+y) \mathrm{A}=x \mathrm{~A}+y \mathrm{~A}$
(iii) $x(y \mathrm{~A})=(x y) \mathrm{A}$
(iv) There exist a scalar 1 so that 1. $\mathrm{A}=\mathrm{A}$.

Proofs are easy and are left as an exercise to the readers.

Ag9 Multiplication of Two Matrices

Let $\mathrm{A}=\left[a_{i j}\right]$ and $\mathrm{B}=\left[b_{i j}\right]$ be two matrices, then the produced AB in this order is defined if the number of columns in A (pre-factor) $=$ the number of rows in B (post-factor), and
(i) Number of rows in $\mathrm{AB}=$ the number of rows in A .
(ii) Number of columns in $\mathrm{AB}=$ the number of cols. in B .
(iii) The (i, j)th element of $\mathrm{AB}=$ sum of products of the elements of i th row of A with the corresponding elements of the j th column of B.

In Symbols. If $\mathrm{A}=\left[a_{i j}\right]_{m \times n}$ and $\mathrm{B}=\left[b_{i j}\right]_{n \times p}$ be two matrices, then the product AB is defined and is a matrix of order $m \times p$.

$$
\text { Let } \quad \begin{aligned}
\mathrm{AB} & =\mathrm{C}=\left[c_{i j}\right]_{m \times p}, \text { where } \\
c_{i j} & =(i, j) \text { th element of } \mathrm{C}(=\mathrm{AB})
\end{aligned}
$$

$$
\begin{aligned}
& =(\text { ith row of A })\left(\begin{array}{c}
j \text { th } \\
\text { col. } \\
\text { of } \\
\mathrm{B}
\end{array}\right) \\
& =\left(a_{i 1} a_{i 2} \ldots \ldots a_{i n}\right)\left(\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\ldots \\
b_{n j}
\end{array}\right) \\
& =a_{i 1} b_{1 j}+a_{2 i} b_{2 j}+\ldots \ldots+a_{i n} b_{n j} \\
& =\sum_{k=1}^{n} a_{i k} b_{k j}
\end{aligned}
$$

Remarks. 1. If the product $A B$ is defined, then the matrices A and B are said to be conformable for multiplication $A B$.
2. If $A B$ is defined, $B A$ may or may noi be defined
3. Method of multiplication is known as Row-by-Column method.

10.10. Properties of Matrix Multiplication

Property 1. Matrix Multiplication is associative. If A, B, C are matrices of the order $m \times n, n \times p, p \times q$ respectively, then
$(A B) C=A(B C)$.
Proof. A is a matrix of order $m \times n, \mathrm{~B}$ is of order $n \times p$.
$\therefore \quad \mathrm{AB}$ is a matrix of order $m \times p ; \mathrm{C}$ is a matrix of order $p \times q$.
$\therefore \quad(\mathrm{AB}) \mathrm{C}$ is a matrix of type $m \times q$.
Similarly, it is easy to see that $A(B C)$ is a matrix of order $m \times q$.
Thus $(A B) C$ and $A(B C)$ are matrices both of the same order.
Let $\quad \mathrm{A}=\left[a_{i j}\right]_{m \times n}, \mathrm{~B}=\left[b_{i j}\right]_{n \times p}, \mathrm{C}=\left[c_{i j}\right]_{p \times q}$
Now (i, k)th element of the product AB
$=$ sum of the products of elements of ith row of A and $k t h$ col. of B

$$
=\sum_{l=1}^{n} a_{i l} b_{l k}=d_{i k}(\text { say })
$$

Now (i, j) th element of the product (AB)C
$=$ sum of the products of elements of ith row of $A B$ and jth column of C
$=\sum_{k=1}^{p} d_{i k} c_{k j}$
$=\sum_{k=1}^{p}\left(\sum_{l=1}^{n} a_{i l} b_{k k}\right) c_{k j}$
$=\sum_{k=1}^{p} \sum_{l=1}^{n}\left(a_{i l} b_{l k}\right) c_{k j}$
$=\sum_{k=1}^{p} \sum_{l=1}^{n} a_{i i}\left(b_{l k} c_{k j}\right)$
$[\because$ Multiplication is associative for elements of matrices]
$=\sum_{l=1}^{n} a_{i l} \sum_{k=1}^{p}\left(b_{i k} c_{k j}\right)$
$=$ Sum of the products of elements of i th row of A with j th column of BC
$=(i, j)$ th element of $\mathrm{A}(\mathrm{BC})$
From (1) and (2),
$(A B) C=A(B C)$.
Note. $(\mathrm{AB}) \mathrm{C}$ and $\mathrm{A}(\mathrm{BC})$ both are written $=\mathrm{ABC}$.
Property 2. Distributive Laws :
If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are three matrices of type $m \times n, n \times p, n \times p$ respectively, then
(i) $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}$
[Left : Distributive Law] (M.D.U 1995)
(ii) $\quad(\mathrm{B}+\mathrm{C}) \mathrm{A}=\mathrm{BA}+\mathrm{CA}$
[Right: Distributive Law]

To prove $A(B+C)=A B+A C$.
A is a mairix of order $m \times n$ and $(\mathrm{B}+\mathrm{C})$ is a matrix of order $n \times p$, therefore $\mathrm{A}(\mathrm{B}+\mathrm{C})$ is a matrix of order $m \times p$. Similarly, each of the matrix AB, AC is of order $m \times p$.
$\therefore \quad A B+A C$ is a matrix of order $m \times p$.
$\therefore \quad A(B+C)$ and $A B+A C$ are matrices of the same order.
Now ($i j$)th element of $A(B+C)$

$$
\begin{align*}
& =\sum_{k=1}^{n} a_{i k}\left(b_{k j}+c_{k j}\right) \tag{1}\\
& =\sum_{k=1}^{n}\left(a_{i k} b_{k j}+a_{i k} c_{k j}\right) \\
& \quad \text { [Using distributive law for elements] } \\
& =\sum_{k=1}^{n} a_{i k} b_{k j}+\sum_{k=1}^{n} a_{i k} c_{k j} \\
& =(i, j) \text { th ele. of } \mathrm{AB}+(i, j) \text { th ele. of } \mathrm{AC} \\
& =(i, j) \text { th ele. of }(\mathrm{AB}+\mathrm{AC}) \tag{2}
\end{align*}
$$

From (1) and (2),
$\begin{aligned} & A(B+C)=A B+A C . \\ & \text { Similarly } \\ &(A+B)(C)=A C+B C\end{aligned}$
Property 3. If A be any $n \times n$ matrix, then
$\mathrm{AI}_{n}=\mathrm{A}=\mathrm{I}_{n} \mathrm{~A}$. Proof is left to the reader as an exercise.
Property 4. Matrix Multiplication is not commutative.
Prove that the product of matrices is not commutative in general i.e., prove $A B \neq B A$, discussing all possibilities.

Proof. Case I. AB is defined but BA is not defined.

Let A be of order 3×2 and B be of order 2×4.
$\therefore \quad \mathrm{AB}$ is defined and is a matrix of order 3×4.
But $B A$ is not defined $\therefore A B \neq B A$.
Case. II. AB and BA are both defined but are of different order.
Let A be of order 2×3 and matrix B of order 3×2.
$\therefore \quad \mathrm{AB}$ is defined and is a matrix of order 2×2.
BA is also defined and is a matrix of order 3×3.

$$
\therefore \quad \mathrm{AB} \neq \mathrm{BA} .
$$

Case III. $A B$ and $B A$ are both defined and both are of the same order, yet $A B \neq B A$.

Let

$$
\mathrm{A}=\left[\begin{array}{rr}
2 & 3 \\
-1 & 4
\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}
2 & 1 \\
7 & 5
\end{array}\right]
$$

be two square matrices of the same order 2×2.

$$
\begin{aligned}
\therefore \quad \mathrm{AB} & =\left[\begin{array}{rr}
2 & 3 \\
-1 & 4
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
7 & 5
\end{array}\right]=\left[\begin{array}{rr}
4+21 & 2+15 \\
-2+28 & -1+20
\end{array}\right] \\
& =\left[\begin{array}{ll}
25 & 17 \\
26 & 19
\end{array}\right] . \\
\mathrm{BA} & =\left[\begin{array}{ll}
2 & 1 \\
7 & 5
\end{array}\right]\left[\begin{array}{rr}
2 & 3 \\
-1 & 4
\end{array}\right]=\left[\begin{array}{rr}
4-1 & 6+4 \\
14-5 & 21+20
\end{array}\right] \\
& =\left[\begin{array}{ll}
3 & 10 \\
9 & 41
\end{array}\right]
\end{aligned}
$$

Thus, $\quad \mathrm{AB} \neq \mathrm{BA}$.
Property 5. Give an example of matrices A and B such that $A \neq 0$,

$\mathrm{B} \neq 0$, but $\mathrm{AB}=0$.

Or Prove that $\mathbf{A B}=\mathbf{0}$, does not imply either $\mathrm{A}=0$ or $\mathrm{B}=0$.

$$
\text { Proof. Let } A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], B=\left[\begin{array}{rr}
1 & 0 \\
-1 & 0
\end{array}\right]
$$

$$
\therefore \quad \mathrm{A} \neq 0, \mathrm{~B} \neq 0
$$

$$
\begin{aligned}
& A B=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
3 \times 2 & 3 * \\
3-2 & 1 * \\
3
\end{array}\right]=\left[\begin{array}{ll}
5 & 2 \\
5 & 2
\end{array}\right] \\
& a c+\left[\begin{array}{ll}
8 & 3 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right]=\left[\begin{array}{lll}
24 & 3 & 1+1 \\
24 & 3 & 3 \times 1
\end{array}\right]=\left[\begin{array}{ll}
5 & 2 \\
5 & 2
\end{array}\right]
\end{aligned}
$$

(类 $A^{*} A^{*}-A^{* * *}$
(

Hempquie 4. Af $A=\left[\begin{array}{ll}0 & 0 \\ 2 & 0\end{array}\right]$. Shom thar $A^{\prime}=0$
\$4

$$
\begin{aligned}
A & =A A=\left[\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
0.0+0.2 & 0.0+0.0 \\
31 & 0.0 .2 \\
20.0
\end{array}\right] \\
& =\left(\begin{array}{ll}
0.0 \\
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Thus $\mathrm{A}^{+}=1$ whotere $\mathrm{A}-0$

Lemangic 2. l A $A=\left[\begin{array}{lll}0 & 3 & 0 \\ 1 & 1 & 0 \\ 4 & 1 & 0\end{array}\right]$ and $D=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 5 & 1\end{array}\right]$

 oract 3 * 3

$$
\begin{aligned}
& \text { NR } *=\left[\left.\begin{array}{lll|lll}
1 & 1 & 9 \\
1 & 1 & 9 \\
1 & 1 & 9
\end{array} \right\rvert\, \begin{array}{ccc}
9 & 8 & 0 \\
y & 4 & 0 \\
9 & 4 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\left\lvert\, \begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 6 \\
1 & 1 & 0
\end{array}\right.\right] \\
& Q A=\left[\begin{array}{ccc}
0 & 1 & 9 \\
1 & 0 & 0 \\
0 & 5 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 9 & 9 \\
1 & 1 & 0 \\
5 & 1 & 9
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& *\left|\begin{array}{lll}
1 & 1 & 0 \\
1 & 3 & 0 \\
9 & 6 & 0
\end{array}\right| \text { Hence } 4 B+3,4
\end{aligned}
$$

Exaruple 1. By using Proncuple of Waihematical Indiee ison prowe shas

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
3 & -4 \\
1 & -1
\end{array}\right], \text { hen } \\
& A^{A}=\left[\begin{array}{cc}
1+2 n & -h n \\
n & 1+2 n
\end{array}\right]
\end{aligned}
$$

n being positive inecger.
Sol. The reauh to be proved is

$$
A^{a}=\left[\begin{array}{cc}
1+2 n & -4 n \tag{1}\\
1 & 1-3 n
\end{array}\right]
$$

Purung $a=1$ in (1), wa get

$$
A=\left[\begin{array}{cc}
1+2 & -4 \\
1 & 1-2
\end{array}\right]=\left[\begin{array}{ll}
1 & -4 \\
1 & -1
\end{array}\right]
$$

whan shows that reanil is growad far $n=1$

ie. $\quad \lambda^{*}=\left[\begin{array}{cc}1 * 3 k & -44 \\ 4 & 1-2 k\end{array}\right]$
we shall, goowe the wesull but $a=k+1$ 化

$$
x^{k+1}=\left(\begin{array}{cc}
1+3 t k+1) & -4 k+1) \tag{2}\\
4+1 & 1-3(k+1)
\end{array}\right)
$$

L.H.S. of $(2)=A^{k+1}=A^{k} \cdot A$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
1+2 k & -4 k \\
k & 1-2 k
\end{array}\right]\left[\begin{array}{cc}
3 & -4 \\
1 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
(1+2 k) 3+(-4 k)(1) & (1+2 k)(-4)+(-4 k)(-1) \\
k \cdot 3+1(1-2 k) 1 & k(-4)+(1-2 k)(-1)
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 k+3 & -4 k-4 \\
k+1 & -2 k-1
\end{array}\right] \\
& =\left[\begin{array}{rr}
1+2(k+1) & -4(k+1) \\
k+1 & 1-2(k+1)
\end{array}\right]=\text { R.H.S. of }(2) .
\end{aligned}
$$

Thus, the result is true for $n=k+1$, whenever it is true for $n=k$
Hence by induction the result is true for all positive integers n.
Example 4. Define the following and give one example of each :
(i) Nil
pry matrix.
Sol. (i) A square matrix A is said to be Idempotent if $A^{2}=A$.
For example, the matrix $A=\left[\begin{array}{rrr}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ is idempotent. (Verify that $\mathrm{A}^{2}=\mathrm{A}$).
(ii) A square matrix A is called Nilpotent if there: exists a positive integer m such that $A^{m}=0$. If m is the least positive integer such that $A^{m}=O$, then m is called the index of the nilpotent matrix A.

For example, the matrices $\left[\begin{array}{ll}a b & b^{2} \\ -a^{2} & -a b\end{array}\right],\left[\begin{array}{rr}1 & 1 \\ -1 & -1\end{array}\right]$ are nilpotent (Verify that $\mathrm{A}^{2}=0$).

Every upper triangular matrix is nilpotent.
(iii) A square matrix A is said to be Involutory if $A^{2}=I$.

For example, the matrix $A=\left[\begin{array}{rr}\sqrt{2} & 1 \\ -1 & -\sqrt{2}\end{array}\right]$ is involutory.

Example 5. Show that the matrix A is involutory, if and only if

$$
(I+A)(I-A)=0 .
$$

Sol. Let A be an involutory matrix of order n.
Then

$$
\mathrm{A}^{2}=1
$$

\Rightarrow

$$
A^{2}-I=0
$$

$$
\Rightarrow \quad I^{2}-A^{2}=0
$$

$$
\left(\because \quad I^{2}=I\right)
$$

$\Rightarrow \quad(I-A)(I+A)=0$
Conversely, if $(I+A)(I-A)=0$
then

$$
I^{2}-I A+A I-A^{2}=0
$$

$$
\begin{array}{rr}
\Rightarrow & \mathrm{I}-\mathrm{A}^{2}+\mathbf{A I}-\mathbf{A I}=\mathbf{O} \\
\Rightarrow & \mathrm{I}-\mathbf{A}^{2}+\mathbf{O}=\mathbf{O} \\
\Rightarrow & \mathrm{I}-\mathbf{A}^{2}=\mathbf{O} \\
\Rightarrow & \mathrm{A}^{2}=\mathbf{I} .
\end{array}
$$

EXERCISE 10 (a) \qquad

* 1.- Perform matrix multiplication $A B$, where

$$
\begin{aligned}
\mathrm{A} & =\left[\begin{array}{rrr}
0 & c & -b \\
-c & 0 & a \\
b & -a & 0
\end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{ccc}
a^{2} & a b & a c \\
a b & b^{2} & b c \\
a c & b c & c^{2}
\end{array}\right] \\
\text { A. If } \mathrm{A}_{\alpha} & =\left[\begin{array}{ll}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right],
\end{aligned}
$$

then show that

$$
A_{\alpha} \cdot A_{\beta}=A_{\alpha+\beta}=A_{\beta} \cdot A_{\alpha} .
$$

13. Find the product of the matrices:

$$
\left[\begin{array}{cc}
1 & 0 \\
i & 1
\end{array}\right]\left[\begin{array}{cc}
1 & i \\
-i & 0
\end{array}\right]\left[\begin{array}{cc}
1 & -i \\
0 & 1
\end{array}\right] \text {, where } i^{2}=-1
$$

Q. $4 *$ 4. If $A=\left[\begin{array}{rrr}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{rrr}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]$

Find $A B, B A$. Is $A B=B A$?
(M.D.U. 1981 S)
4. Show that for

$$
\begin{aligned}
\mathrm{A} & =\left[\begin{array}{rr}
a b & b^{2} \\
-a^{2} & -a b
\end{array}\right] \\
\mathrm{A}^{2} & =0 .
\end{aligned}
$$

6. If $\mathrm{A}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \mathrm{B}=\left[\begin{array}{rr}0 & -i \\ i & 0\end{array}\right]$, where $i^{2}=-1$.

Verify that $(A+B)^{2}=A^{2}+B^{2}$.

* 7. (a) Show that the matrix $A=\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]$
is a solution of the matrix equation
$A^{2}-5 A+7=0$.
(K.U. 1980 ; M.D.U. 1983)
(b) If $f(x)=x^{2}-5 x+7$, find $f(\mathrm{~A})$, where

$$
A=\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right]
$$

(K.U. 1988)
*
8. If $f(x)=x^{2}-5 x+6$, find $f(A)$, where

$$
A=\left[\begin{array}{rrr}
2 & 0 & 1 \\
2 & 1 & 3 \\
1 & -1 & 0
\end{array}\right]
$$

(K.U. 1980)
[Hint. $f(A)=A^{2}-5 A+6 I_{3}$, find A^{2} and substitute the values of I_{3}, A and A^{2}.]
9. Prove that matrix multiplication is distributive over matrix
(M.D.U. 1991)
(Reproduce property 2, Art. 10.10)
10. If $\mathrm{A}=\left[\begin{array}{ll}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$
Show that

$$
\begin{aligned}
& n+1 \\
& (\text { M.D.U. } 1994 \text {; G.N.D.U. 1981) }
\end{aligned}
$$

$$
A^{n}=\left[\begin{array}{ll}
\cos n \theta & \sin n \theta \\
-\sin n \theta & \cos n \theta
\end{array}\right]
$$

11. If

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \text {, prove that }
$$

$$
\left(a \mathrm{I}_{2}+b \mathrm{~A}\right)^{n}=a^{n} \mathrm{I}_{2}+n a^{n-1} b \mathrm{~A}
$$

for a positive integer n.
(M.D.U. 1993)
12. Determine all the idempotent diagonal matrices of order n.

$$
\begin{aligned}
& =\left[\begin{array}{lll}
d_{1}{ }^{2} & 0 & 0 \ldots \ldots 0 \\
0 & d_{2}{ }^{2} & 0 \ldots \ldots .0 \\
\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . . \ldots \ldots \\
0 & 0 & 0 \ldots \ldots d_{n}{ }^{2}
\end{array}\right] \\
& \therefore \quad \mathrm{A}^{2}=\mathrm{A} \Rightarrow d_{i}{ }^{2}=d_{i} \text { for } i=1,2, \ldots . ., n \\
& \Rightarrow \quad d_{i}=0,1 \text { for } i=1,2, \ldots \ldots, n
\end{aligned}
$$

Hence $\mathbf{A}=\operatorname{dia} .\left[d_{1}, d_{2}, \ldots ., d_{n}\right]$ for $d_{1}, d_{2}, \ldots . ., d_{n} \in\{0,1\}$ is the required idempotent diagonal matrix.]
13. Show that the matrix $\mathbf{A}=\left[\begin{array}{rrr}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right]$ is nilpotent with index 3 .
[Hint. Show $\mathrm{A}^{3}=0$.]
14. Show that the following matrices are involutory

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right],\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

15. Show that the sum of two Idempotent matrices \mathbf{A} and B is idempotent if $\mathrm{AB}=\mathrm{BA}=0$.

Answers

1. $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

$$
\text { 3. }\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

4. $\mathrm{AB}=\left[\begin{array}{rrr}-1 & 12 & 11 \\ -1 & 7 & 8 \\ -2 & -1 & 5\end{array}\right], \mathrm{BA}=\left[\begin{array}{rrr}5 & 9 & 13 \\ -1 & 2 & 4 \\ -2 & 2 & 4\end{array}\right]$
5. $\quad\left[\begin{array}{rrr}1 & -1 & -3 \\ -1 & -1 & -10 \\ -5 & 4 & 4\end{array}\right]$
6. $\mathrm{A}=\left[\begin{array}{rrr}2 & -3 & 4 \\ 5 & -7 & 8 \\ -3 & 4 & 11\end{array}\right], \mathrm{X}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right], \mathrm{B}=\left[\begin{array}{r}10 \\ 9 \\ 15\end{array}\right]$

10.12. Transpose of a matrix

Let A be any given matrix of the order $m \times n$, then a matrix obtained from A by changing its rows into columns and columns into rows is called the transpose of a matrix A and is denoted by A^{\prime} which will be of the type $n \times m$.

$$
\text { In symbols. If } \mathrm{A}=\left[a_{i j}\right]_{m \times n} \text {, then }
$$

$$
\mathrm{A}^{\prime}=\left[c_{i j} \ln _{\dot{x}-m} \text {, whère } \dot{c}_{i j}=a_{j i z}\right.
$$

i.e., $\quad(i, j)$ th element of ${ }^{2} A^{\prime}=(\tilde{j}, i)$ th element of A.

For example,

Let

$$
A=\left[\begin{array}{rrrr}
1 & 2 & 3 & -1 \\
2 & -3 & 4 & -5 \\
6 & 7 & -8 & 2
\end{array}\right]
$$

then

$$
A^{\prime}=\left[\begin{array}{rrr}
1 & 2 & 6 \\
2 & -3 & 7 \\
3 & 4 & -8 \\
-1 & -5 & 2
\end{array}\right]
$$

If A^{\prime} and B^{\prime} denote transpose of A and B, prove that
(1) $\left(\mathbf{A}^{\prime}\right)^{\prime}=\mathbf{A}$
(2) $(\mathbf{A}+\mathbf{B})^{\prime}=\mathbf{A}^{\prime}+\mathbf{B}^{\prime}, \mathbf{A}, \mathbf{B}$ are conformable for addition
(3) $(\mathbf{k} \mathbf{A})^{\prime}=\mathbf{k} \mathbf{A}^{\prime}, \mathbf{k}$ is any scalar
(4) $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}, \mathbf{A}, \mathbf{B}$ are conformable for multiplication
(M.D.U. 1982)
(5) $\left(\mathbf{A}^{n}\right)^{\prime}=\left(\mathbf{A}^{\prime}\right)^{n}, \mathbf{A}$ is a square matrix, n is a positive integer.

Proof. (1) Let $\mathrm{A}=\left[a_{i j}\right]_{m \times n}$
$\begin{array}{lr}\therefore & \mathrm{A}^{\prime}=\left[c_{i j}\right]_{n \times m}, \text { where } c_{i j}=a_{j i} \\ \therefore & \left(\mathrm{~A}^{\prime}\right)^{\prime}=\left[d_{i j}\right]_{m \times n}\end{array}$
where $d_{i j}=c_{j i}=a_{i j}$

$$
\left(\mathrm{A}^{\prime}\right)^{\prime}=\left[d_{i j}\right]_{m \times n}
$$

$\therefore \quad\left(\mathbf{A}^{\prime}\right)^{\prime}=\left[a_{i j}\right]_{m \times n}=\mathbf{A}$.
(2) Let $\quad \mathrm{A}=\left[\left.a_{i j}\right|_{m \times n}, \mathrm{~B}=\left[b_{i n}\right]_{m \times n}\right.$
$A+B$ is a matrix of order $m \times n$
$(A+B)^{\prime}$ is a matrix of order $n \times m$
Again A^{\prime} and B^{\prime} are matrices of order $n \times m$
$\left(A^{\prime}+B^{\prime}\right)$ is a matrix of order $n \times m$
$(A+B)^{\prime}$ and $\left(A^{\prime}+B^{\prime}\right)$ are matrices of the same order.
(i, j) th element of $(A+B)^{\prime}$
$=(j, i)$ th element of $(A+B)$
$=(j, i)$ th element $\mathrm{A}+(j, i)$ th element of B
$=(i, j)$ th element of $\mathrm{A}^{\prime}+(i, j)$ th element of B^{\prime}.
$=(i, j)$ th element of $\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right)$.
Thus $(\mathbf{A}+\mathrm{B})^{\prime}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}$.
(3) Let $\mathrm{A}=\left[a_{i j}\right]_{m \times n}$
$\therefore \quad(k A)^{\prime}$ and $k A^{\prime}$ are matrices of the same order $n \times m .(i, j)$ th element of $(k A)^{\prime}$

$$
\begin{aligned}
& =(j, i) \text { th element of } k \mathrm{~A} \\
& =k[(j, i) \text { th element of } \mathrm{A}] \\
& =k\left[(i, j) \text { th element of } \mathrm{A}^{\prime}\right] \\
& =(i, j) \text { th element of } k \mathrm{~A}^{\prime}
\end{aligned}
$$

$$
(k \mathrm{~A})^{\prime}=k \mathrm{~A}^{\prime}
$$

(4) To prove $(A B)^{\prime}=B^{\prime} A^{\prime}$

$$
\begin{array}{ll}
\text { Let } & \mathrm{A}=\left[a_{i j}\right]_{m \times n} \text { and } \mathrm{B}=\left[b_{i j}\right]_{n \times p} \\
\therefore & \mathrm{~A}^{\prime}=\left[\alpha_{i j}\right]_{n \times m} \text { and } \mathrm{B}^{\prime}=\left[\beta_{i j}\right]_{p \times n,} \text { where } \\
& \alpha_{i j}=a_{j i} \text { and } \beta_{i j}=b_{j i}
\end{array}
$$

Now $A B$ is a matrix of order $m \times p$.

$\therefore \quad(\mathrm{AB})^{\prime}$ is a matrix of order $p \times m$. Also $\mathrm{B}^{\prime} \mathrm{A}^{\prime}$ is a matrix of order
$p \times m$.
$\therefore \quad(A B)^{\prime}$ and $B^{\prime} A^{\prime}$ are matnces of the same order $p \times m$.
(i, j) th element of $(\mathrm{AB})^{\prime}$

$$
=(j, i) \text { th element of } \mathrm{AB}
$$

$=\sum_{k=1}^{n} a_{j k} b_{k i} \quad \begin{aligned} & \text { (The sum of products of elements } \\ & \text { of jth row of } \mathrm{A} \text { with corresp. } \\ & \text { element of } i \text { th col. of } \mathrm{B})\end{aligned}$

$$
=\sum_{k=1}^{n} \alpha_{k j} \beta_{i k}
$$

$$
\left[\because \alpha_{i j}=a_{i j} \text { and } \beta_{i j}=b_{j i}\right]
$$

$$
=\sum_{k=1}^{n} \beta_{i k} \alpha_{k j}
$$

$$
\begin{equation*}
=(i, j) \text { th element of } \mathrm{B}^{\prime} \mathrm{A}^{\prime} \tag{2}
\end{equation*}
$$

\therefore From (1) and (2),

$$
(\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}
$$

$\operatorname{Cor} .\left(A_{1} \cdot A_{2} \ldots A_{n}\right)^{\prime}=A_{n}^{\prime} \cdot A_{n-1}^{\prime} \ldots A_{2}^{\prime} \cdot A_{1}{ }^{\prime}$

$$
\text { Putting } A_{1}=A_{2} \ldots=A_{n}=A \text {, where } A \text { is a sq. matrix }
$$

$$
\therefore \quad(A \cdot A \ldots A)^{\prime}=A^{\prime} \cdot A^{\prime} \ldots A^{\prime} \cdot A^{\prime}
$$

$$
\left(\mathrm{A}^{n}\right)^{\prime}=\left(\mathrm{A}^{\prime}\right)^{n}
$$

Hence $\left(A^{n}\right)^{\prime}=\left(A^{\prime}\right)^{n}, n$ being a natural number

Mo14. Conjugate of a matrix

Let A be a given matrix of order $m \times n$ over the complex number system, then a matrix obtained from A by replacing each of its elements by their corresponding complex conjugates is called the conjugate of A and is denoted by $\overline{\mathbf{A}}$, where $\overline{\mathbf{A}}$ is also of the same order $m \times n$.

In notation we can define as

$$
\text { If } \quad \begin{aligned}
& \mathrm{A}=\left[u_{i j}\right]_{m \times n}, \text { then } \\
& \overline{\mathrm{A}}=\left[b_{i j}\right]_{m \times n}, \text { where } b_{i j}=\bar{a}_{i j}
\end{aligned}
$$

For example,

$$
\begin{array}{ll}
\text { Let } & \mathrm{A}=\left[\begin{array}{ccc}
2+i & 2 & 5 i \\
5 i+7 & -8 & 4 i-3 \\
2 & 5+i & 4-2 i
\end{array}\right] \\
\therefore & \overline{\mathrm{A}}=\left[\begin{array}{ccc}
2-i & 2 & -5 i \\
-5 i+7 & -8 & -4 i-3 \\
2 & 5-i & 4+2 i
\end{array}\right]
\end{array}
$$

It is to be noted that conjugate complex of $5 i+7$ is $-5 i+7$.

10.15. Theorem

If \bar{A} and \bar{B} denote the conjugate of A and B, respectively, then prove

1. $(\overline{\mathrm{A}})=\mathrm{A}$.
2. $(\overline{\mathbf{A}+\mathbf{B}})=\overline{\mathbf{A}}+\overline{\mathbf{B}}$, where A and B are conformable for addition.
3. $(\overline{\mathbf{k A}})=\overline{\mathbf{k}} \overline{\mathbf{A}}$, where k is any complex number.
4. $(\overline{\mathbf{A B}})=\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$.
5. $(\overline{\mathbf{A}})^{n}=\left(\overline{\mathbf{A}}^{n}\right)$.

Proofs. Proofs for properties (1), (2) and (3) are easy and are left to the reader as an exercise.
4. To prove $\overline{A B}=\bar{A} \cdot \bar{B}$.

Let $\mathrm{A}=\left[a_{i j}\right]_{m \times n}$ and $\mathrm{B}=\left[b_{i j}\right]_{n \times p}$, where the elements $a_{i j}$ and $b_{i j}$ are over the complex field.

$$
\begin{array}{ll}
\overline{\mathrm{A}}=\left[\alpha_{i j}\right]_{m \times n} & \text { where } \alpha_{i j}=\bar{a}_{i j} \\
\overline{\mathrm{~B}}=\left[\beta_{i j}\right]_{n \times p} & \text { where } \alpha_{i j}=\bar{b}_{i j} \tag{1}
\end{array}
$$

Now $\overline{\mathrm{AB}}$ and $\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$ are matrices, both of the same order $m \times p$.
(i, j) th element of $\overline{\mathrm{AB}}$
$=$ Conjugate of the (i, j) th element of AB

$$
\begin{align*}
& =\left(\overline{\sum_{k=1}^{n} a_{i k} \cdot b_{k j}}\right) \\
& =\sum_{k=1}^{n} \overline{a_{i k} \cdot b_{k j}} \\
& =\sum_{k=1}^{n} \bar{a}_{i k} \cdot \bar{b}_{k j} \\
& =\sum_{k=1}^{n} \alpha_{i k} \cdot \beta_{k j} \\
& =(i, j) \text { th element of } \overline{\mathrm{A}} \cdot \overline{\mathrm{~B}}
\end{align*} \quad\left[\text { Using } \overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}\right]
$$

From (1) and (2),
$\overline{\mathbf{A B}}=\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$.
(5) To prove $\overline{\mathrm{A}}^{n}=(\overline{\mathrm{A}})^{n}$

Using the above result (4),

$$
\overline{\mathrm{A}_{1} \cdot \mathrm{~A}_{2} \ldots \ldots . \mathrm{A}_{n}}=\overline{\mathrm{A}_{1}} \cdot \overline{\mathrm{~A}}_{2} \ldots \ldots . \overline{\mathrm{A}}_{n}
$$

where the product on each side is defined.
Put $\quad A_{1}=A_{2}=A_{n}=A$
$\therefore \quad \overline{\mathrm{A} \cdot \mathrm{A} \cdot \mathrm{A} \ldots \ldots . n \text { terms }}=\overline{\mathrm{A}} \cdot \overline{\mathrm{A}} \cdot \overline{\mathrm{A}} \ldots \ldots . n$ terms
$\therefore \quad \overline{\mathbf{A}}^{n}=(\overline{\mathrm{A}})^{n}, n$ is a natural number.

10.16. Transposed Conjugate of a Matrix

The transposed of the conjugate or conjugate of the transpose of a matrix A is called Transposed Conjugate of A and is denoted by A^{θ} or by A^{*}. Thus

$$
A^{\theta}=(\overline{\mathrm{A}})^{\prime}=\left(\overline{\mathrm{A}}^{\prime}\right)
$$

Thus if $\mathrm{A}=\left[a_{i j}\right]$, then $\mathrm{A}^{\theta}=\left[\alpha_{i j}\right]$ where $\alpha_{i j}=\bar{a}_{j i}$
i.e. (i, j) th element of $\mathrm{A}^{\theta}=$ The conjugate complex of the (j, i) th element
of A. For example, if

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{rcr}
1-2 i & 2+3 i & 4 \\
-7 & 8 i & 5 \\
0 & 6 i+5 & 4
\end{array}\right] \\
& \overline{\mathrm{A}}=\left[\begin{array}{rrr}
1+2 i & 2-3 i & 4 \\
-7 & -8 i & 5 \\
0 & -6 i+5 & 4
\end{array}\right] \\
& \mathrm{A}^{\theta}=(\overline{\mathrm{A}})^{\prime}=\left[\begin{array}{ccc}
1+2 i & -7 & 0 \\
2-3 i & -8 i & -6 i+5 \\
4 & 5 & 4
\end{array}\right] .
\end{aligned}
$$

10.17. Theorem. If A^{θ} and B^{θ} be the transposed conjugate of A and B respectively, then

1. $\left(\mathbf{A}^{\theta}\right)^{\theta}=\mathbf{A}$
2. $\left(\mathbf{A}+\mathbf{B}^{\boldsymbol{\theta}}=\mathbf{A}^{\theta}+\mathbf{B}^{\theta}, \mathbf{A}, B\right.$ are of the same order
3. $(\mathbf{k A})^{\theta}=\overline{\mathbf{k}} \mathbf{A}^{\theta}, \mathbf{k}$ is any complex number
4. $(\mathbf{A B})^{\theta}=\mathbf{B}^{\theta} \mathbf{A}^{\theta}, \mathbf{A}, \mathbf{B}$ are conformable for multiplication.

Proof.

1. $\quad\left(\mathrm{A}^{\theta}\right)^{\theta}=\overline{\left((\overline{\mathrm{A}})^{\prime}\right)^{\prime}}=\overline{(\mathrm{A})}=\mathrm{A}$
2. $(A+B)^{\theta}=(\overline{(A+B)})^{\prime}=(\bar{A}+\bar{B})^{\prime}$
$=(\bar{A})^{\prime}+(\bar{B})^{\prime}=A^{\theta}+B^{\theta}$
3. $(k \mathrm{~A})^{\theta}=\overline{(k \mathrm{~A})^{\prime}}=(\bar{k} \overline{\mathrm{~A}})^{\prime}=\bar{k}(\overline{\mathrm{~A}})^{\prime}$
$=\bar{k} \mathrm{~A}^{\theta}$
4. $(\mathrm{AB})^{\theta}=(\overline{\mathrm{AB}})^{\prime}=(\overline{\mathrm{A}} \overline{\mathrm{B}})^{\prime}$
$=(\overline{\mathrm{B}})^{\prime}(\overline{\mathrm{A}})^{\prime}=\mathrm{B}^{\theta} \mathrm{A}^{\theta}$.

10,18. Symmetric Matrix

Def. A matrix A is said to be a symmetric matrix if $A^{\prime}=A$, i.e. if the transpose of a matrix is equal to itself.

Let

$$
\begin{aligned}
\mathrm{A} & =\left[a_{i j}\right]_{m \times n} \\
\mathrm{~A}^{\prime} & =\left[\alpha_{i j}\right]_{n \times m}, \text { where } \alpha_{i j}=a_{j i} .
\end{aligned}
$$

The matrix A will be symmetric, if and only if,

$$
\mathbf{A}=\mathbf{A}^{\prime}
$$

i.e. if and only if $m=n$ and $a_{i j}=\alpha_{i j}=a_{j i}$. Thus we have

Definition. A square matrix $A=\left[a_{i j}\right]$ is symmetric if $a_{i j}=a_{j i}$ for all i and j, i.e.

A square matrix is symmetric if and only if (i, j) th element $=(j, i)$ th element.

EXERCISE 10 (b)

1. Define the following and give one suitable example in each case :
(i) Transpose of a matrix
(ii) Symmetric matrix
(iii) Skew-symmetric matrix
(iv) Hermitian matrix
(v) Skew-Hermitian matrix.
2. Find the transpose of the following matrices and point out it any of them is symmetric or Skew-symmetric
(i) $\left[\begin{array}{lll}a & b & c \\ b & k & m \\ c & m & x\end{array}\right]$
(ii) $\left[\begin{array}{rrr}0 & 5 & 7 \\ -5 & 0 & 11 \\ -7 & -11 & 0\end{array}\right]$.
3. ff $\mathrm{A}=\left[\begin{array}{rr}i & 0 \\ 0 & -i\end{array}\right], \quad \mathrm{B}=\left[\begin{array}{rr}0 & i \\ -i & 0\end{array}\right], i^{2}=-1$

Verity that $(\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}$.
4. If $\mathrm{A}=\left[\begin{array}{rrr}1 & 3 & 5 \\ -1 & -3 & 7 \\ 0 & -5 & -7\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{rrr}2 & 4 & 6 \\ 0 & -2 & -4 \\ -6 & 8 & -8\end{array}\right]$,

Verify $(\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}$.
(M.D.U. 1994)
5. $\mathrm{Hf} A=\left[\begin{array}{rr}2 & 3 \\ 5 & -7\end{array}\right]$

Verify that $\left(A^{2}\right)^{\prime}=\left(A^{\prime}\right)^{2}$.
6. If $\mathrm{A}=\left[\begin{array}{cc}2+3 i & i \\ 6 i+5 & 0\end{array}\right], \quad \mathrm{B}=\left[\begin{array}{cc}i & 2 i+1 \\ 2-i & -i\end{array}\right]$

Verify that $\quad(\overline{\mathrm{AB}})=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$.
7. Prove by an example of a matrix 3×3, that if A is a lower triangular matrix,

1 \& then A^{\prime} is an upper triangle matrix.
8. If A and B are symmetric, show that $(A B+B A)$ is symmetric and $(A B-B A)$ is skew-symmetric.
9. If $\mathrm{A}=\left[\begin{array}{rr}i & 0 \\ 0 & -i\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{rr}0 & i \\ -i & 0\end{array}\right]$,
verify that $(A B)^{\theta}=B^{\theta} A^{\theta}$.
(M.D.U. 1993)
10. Show that the matrix $\left[\begin{array}{ccc}0 & 1+i & 2+3 i \\ 1-i & 1 & -i \\ 2-3 i & -2 & 0\end{array}\right]$ is Hermitian.
(M.D.U. 1993)
11. Show that $(i) A=\left[\begin{array}{ccc}2 & 1+i & 2+3 i \\ 1-i & 1 & -i \\ 2-3 i & i & 0\end{array}\right]$ is Hermitian.
(ii) $\mathrm{B}=\left[\begin{array}{ccc}2 i & 1+i & 2-3 i \\ -1+i & 5 i & 2 \\ -2-3 i & -2 & 0\end{array}\right]$ is Skew-Hermitian.
(M.D.U. 1994)
(iii) $i \mathrm{~B}$ is Hermitian.
12. If \triangle is a Hermitian (Skew-Hermitian) matrix, then show that z iA is SkewHermitian (Hermitian)
13. Show that every square matrix can be uniquely expressed as the sum of a Hermitian and a Skew-Hermitian matrix.
(K.U. 1988)
[Hint. Write $A=\frac{1}{2}\left(A+A^{9}\right)+\frac{1}{2}\left(A-A^{5}\right)=P+O$ and show that $P^{\theta}=P$ and $Q^{\theta}=-Q . J$
14. If A and B are Hermitian, show that
(i) $\mathrm{AB}+\mathrm{BA}$ is Hermitian
(KW. 1991 5)
(ii) $\mathrm{AB}-\mathrm{BA}$ is Skew-Hermitian.
(KW. 1991 S)
(iii) AB is Hermitian if and only if $\mathrm{AB}=\mathrm{BA}$.
(iv) BAB and ABA are Hermitian.

Answers

2. (i) $\left[\begin{array}{lll}a & b & c \\ b & k & m \\ c & m & x\end{array}\right]$ (It is a Symmetric Matrix)
(ii) $\left[\begin{array}{rrr}0 & -5 & -7 \\ 5 & 0 & -11 \\ 7 & 11 & 0\end{array}\right]$ (It is a Skew-symmetric Matrix).

$\boldsymbol{\wedge} 10.20$. Definition. Determinant of a Square Matrix

(i) If $\mathrm{A}=\left[a_{11}\right]$ is a square matrix of order 1×1 over a field F , then determinant of the matrix A is the number $a_{11} \in \mathrm{~F}$. Thus

$$
\operatorname{det} \mathrm{A}=|\mathrm{A}|=a_{11}
$$

(ii) If
be a square matrix of order $n \times n$ over a field F, where $n \geq 2$, then we write determinant of A as

$$
\operatorname{det} A=|A|
$$

$$
\begin{align*}
& =\left|\begin{array}{ll}
a_{11} & a_{12} \ldots \ldots . . a_{1 n} \\
a_{21} & a_{22} \ldots \ldots . . a_{2 n} \\
a_{n 1} & a_{n 2} \ldots \ldots . . a_{n n}
\end{array}\right| \tag{2}\\
& =(-1)^{i+1} a_{i 1} \operatorname{det} \mathrm{~A}_{i 1}+(-1)^{i+2} a_{i 2} \operatorname{det} \mathrm{~A}_{i 2}+\ldots \ldots . . \\
& +(-1)^{i+n} a_{i n} \operatorname{det} \mathrm{~A}_{i n} \\
& =\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det} \mathrm{~A}_{i j} \\
& =\sum_{j=1}^{n} a_{i j}(-1)^{i+j} \operatorname{det} \mathrm{~A}_{i j} \tag{1}
\end{align*}
$$

where $A_{i j}$ is a sub-matrix of order $(n-1) \times(n-1)$, obtained by deleting the i th row and the j th col. of matrix A and determinant of $A_{i j}$ is defined by applying induction on n.
$\operatorname{det} \mathrm{A}=\sum_{j=1}^{n} a_{i j} \cdot(-1)^{i+j} \operatorname{det} \mathrm{~A}_{i j}$ is called expansion of $\operatorname{det} \mathrm{A}$ by the th row. Similarly, we can write

$$
\operatorname{det} \mathrm{A}=\sum_{i=1}^{n} a_{i j} \cdot(-1)^{i+j} \operatorname{det} \mathrm{~A}_{i j}
$$

It is known as expansion of $\operatorname{det} \mathrm{A}$ by the j th column.
We observe that $\operatorname{det} A$ is a scalar $\in F$. Thus, a determinant is a function on the set of all $n \times n$ square matrices over the field F .

10.21. Definition. Minor of an Element

If $A=\left[a_{i j}\right]$ is any square matrix, then $\operatorname{det} A_{i j}$ called the minor of (i, j) th entry $a_{i j}$ of A and may be denoted by $M_{i j}$.

10.22. Co-factor of an Element

If $\mathrm{A}=\left[a_{i j}\right]$ is any square matrix of order $n \times n$, then $(-1)^{i+j} \operatorname{det} \mathrm{~A}_{i j}$ is called the co-factor of (i, j) th entry $A_{i j}$ of A, and may be denoted by $C_{i j}$. Thus

$$
\begin{aligned}
C_{i j} & =\text { Co-factor of }(i, j) \text { th entry of a matrix } A \\
& =(-1)^{i+j} \operatorname{det} A_{i j} \text {, where } A_{i j} \text { is the }(n-1) \times(n-1)
\end{aligned}
$$

sub-matrix of A, obtained by deleting the i th row and the j th col. of A.

Remarks :

In terms of co-factors, the expansion of the determinant of a square matrix $\mathrm{A}=\left[a_{i j}\right]_{n \times n}$ is

$$
\begin{aligned}
\operatorname{det} A & =\sum_{j=1}^{n} a_{i j} C_{i j} \text { (expansion by } i \text { th row) } \\
& =\sum_{i=1}^{n} a_{i j} C_{i j} \text { (expansion by } j \text { th col.) }
\end{aligned}
$$

10.23. An important Property

If $\mathrm{A}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then
(i) $\sum_{j=1} a_{i j} C_{r j}=\operatorname{det} A$ if $r=i$.
(ii) $\sum_{j=1}^{3} a_{i j} \mathrm{C}_{r j}=0 \quad$ if $r \neq i$.

$$
\begin{aligned}
& \text { Proof. (i) When } r=i \text {, } \\
& \sum_{j=1}^{3} a_{i j} C_{i j} \\
& =a_{i 1} \mathrm{C}_{i 1}+a_{i 2} \mathrm{C}_{i 2}+a_{i 3} \mathrm{C}_{i 3} \\
& =a_{11} \mathrm{C}_{11}+a_{12} \mathrm{C}_{12}+a_{13} \mathrm{C}_{13} \\
& =a_{11} \cdot(-1)^{2}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+a_{12} \cdot(-1)^{3}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& +a_{13} \cdot(-1)^{4}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
& \left.=a_{11} \left\lvert\, \begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right.\right]-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
& =a_{11} \operatorname{det} \mathrm{~A}_{11}-a_{12} \operatorname{det} \mathrm{~A}_{12}+a_{13} \operatorname{det} \mathrm{~A}_{13} \\
& =\operatorname{det} \mathrm{A} \text {. } \\
& \text { (ii) } r \neq i \\
& \sum_{j=1}^{3} a_{i j} \mathrm{C}_{r j}=a_{i 1} \mathrm{C}_{r 1}+a_{i 2} \mathrm{C}_{r 2}+a_{i 3} \mathrm{C}_{r 3} \\
& \text { Taking } i=1 \text { and } r=2 \text { (say) } \\
& =a_{11} \mathrm{C}_{21}+a_{12} \mathrm{C}_{22}+a_{13} \mathrm{C}_{23} \\
& =a_{11} \cdot(-1)^{3} \operatorname{det} \mathrm{~A}_{21}+a_{12} \cdot(-1)^{4} \operatorname{det} \mathrm{~A}_{22} \\
& +a_{13} \cdot(-1)^{5} \operatorname{det} \mathrm{~A}_{23} \\
& =-a_{11}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|+a_{12}\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right|-a_{13}\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right| \\
& =-a_{11}\left(a_{12} \cdot a_{33}-a_{13} \cdot a_{32}\right)+a_{12}\left(a_{11} \cdot a_{33}-a_{31} a_{13}\right) \\
& -a_{13}\left(a_{11} \cdot a_{32}-a_{12} \cdot a_{31}\right) \\
& =-a_{11} a_{12} a_{33}+a_{11} a_{13} a_{32}+a_{11} a_{12} a_{33}-a_{12} a_{31} a_{13} \\
& -a_{11} a_{13} a_{32}+a_{13} a_{12} a_{31} \\
& =0 \text {. }
\end{aligned}
$$

Remark. The result is quite general and holds for determinants of square matrices of all order. Thus if $A=\left[a_{i j}\right]_{n \times n}$, then
(1) $\sum_{j=1}^{n} a_{i j} C_{r j}=\operatorname{det} A$ if $i=r$

$$
=0 \quad \text { if } i \neq r .
$$

(2) If A is a square matrix with any one line consisting of zero elements, then

$$
\operatorname{det} A=0
$$

$\left[\because a_{i j}=0\right.$ for some i or $\left.j\right]$
(3) If A is triangular matrix, then
$\operatorname{det} A=$ product of the diagonal elements.

$$
\begin{aligned}
&=\left|\begin{array}{lll}
\Delta_{1} & 0 & 0 \\
0 & \Delta_{1} & 0 \\
0 & 0 & \Delta_{1}
\end{array}\right| \quad\left[\because a_{1} \mathrm{~A}_{1}+b_{1} \mathrm{~B}_{1}+c_{1} \mathrm{C}_{1}=\Delta\right. \\
&\left.a_{1} \mathrm{~A}_{2}+b_{1} \mathrm{~B}_{2}+c_{1} \mathrm{C}_{2}=0 \text { etc. }\right] \\
&=\Delta_{1}^{3} \\
& \therefore \quad \Delta_{2}=\Delta_{1}^{2}
\end{aligned}
$$

Hence $\left|\begin{array}{lll}\mathrm{A}_{1} & \mathrm{~B}_{1} & \mathrm{C}_{1} \\ \mathrm{~A}_{2} & \mathrm{~B}_{2} & \mathrm{C}_{2} \\ \mathrm{~A}_{3} & \mathrm{~B}_{3} & \mathrm{C}_{3}\end{array}\right|=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|^{2}$.
Adjugate determinants or Reciprocal determinants. If all the elements in a determinant Δ be replaced by their co-factors in Δ, then the determinant so obtained is called Adjugate or Reciprocal of Δ.

For example in the above example Δ_{2} is adjugate of Δ_{1}. In general if Δ_{1} is of nth order, then $\Delta_{2}=\Delta_{1}{ }^{n-1}$.

EXERCISE 10 (d)

1. If $\mathrm{A}=\left[\begin{array}{rrr}1 & 2 & 3 \\ -1 & 0 & 5 \\ 0 & 7 & -2\end{array}\right], \mathrm{B}=\left[\begin{array}{rrr}1 & 4 & 3 \\ -2 & 6 & 7 \\ 5 & 1 & 1\end{array}\right]$

Verify that $\operatorname{det} .(A B)=(\operatorname{det} . A)(\operatorname{det} . B)$.
2. If $\mathrm{A}=\left[\begin{array}{ccc}1+i & i & 5 i+2 \\ 5 & -1 & 0 \\ 2+i & 1 & 7\end{array}\right]$

Verify that det. $\overline{\mathrm{A}}=\overline{(\operatorname{det} . \mathrm{A})}$
where the bar indicates the complex conjugate.
3. If $\mathrm{AA}^{\prime}=\mathrm{I}$, then $|\mathrm{A}|= \pm 1$.
4. I Δ^{\prime} is the reciprocal determinant of a determinant Δ of order n, then $\Delta^{\prime}=\Delta^{n-1}$, (proceed as in example 5).
5. Prove that if A and B are two square matrices of order n, then

$$
\text { (i) }\left|\mathrm{A}^{\prime} \mathrm{B}\right|=\left|\mathrm{AB}^{\prime}\right|=\left|\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right|=|\mathrm{AB}|
$$

(ii) $\left|\mathrm{A}^{\theta} \mathrm{B}^{\theta}\right|=|\overline{\mathrm{AB}}|$.

10.27. Adjoint of a Square Matrix

Def. If $A=\left[\bar{a}_{i j}\right]$ is a square matrix of order n, and $A_{i j}$ is the cofactor of $a_{i j}$ in $|A|$, then' the matrix

$$
\left[A_{i j}\right]^{\prime}=\left[\begin{array}{ccc}
A_{11} & A_{21} \ldots \ldots . A_{n 1} \\
A_{12} & A_{22} \ldots \ldots . . A_{n 2} \\
\vdots & \vdots & \vdots \\
A_{1 n} & A_{2 n} \ldots \ldots . A_{n n}
\end{array}\right]
$$

is called the adjoint of A and is written as adj. A.

In other words. To find adjoint of square matrix A, replace each element of A by its co-factor in $|A|$ and take the transpose, the matrix so obtained will be adjoint of A.

Example 1. Calculate the adjoint of A

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Sol. $\quad|\mathrm{A}|=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$
\therefore Co-factor of $a,(1,1)$ th element $=(-1)^{2}|d|=d$
Co-factor of $b,(1,2)$ th element $=(-1)^{3}|c|=-c$
Co-factor of $c,(2,1)$ th element $=(-1)^{3}|b|=-b$
Co-factor of $d,(2,2)$ th element $=(-1)^{4}|a|=a$
$\therefore \quad$ Adj. of $\mathrm{A}=\left[\begin{array}{cc}d & -c \\ -b & a\end{array}\right]^{\prime}=\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.
Example 2. Calculate the adjoint of the diagonal matrix

$$
A=\left[\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right]
$$

Sol. Co-factor of $d_{1}=(-1)^{2}\left|\begin{array}{cc}d_{2} & 0 \\ 0 & d_{3}\end{array}\right|=d_{2} d_{3}$.

$$
\text { Co-factor of } d_{2}=(-)^{4},\left|\begin{array}{cc}
d_{1} & 0 \\
0 & d_{3}
\end{array}\right|=d_{1} d_{3}
$$

$$
\text { Co-factor of } d_{3}=(-1)^{6}\left|\begin{array}{cc}
d_{1 *} & 0 \\
0 & d_{2}
\end{array}\right|=d_{1} d_{2}
$$

\therefore Adj. of $\mathrm{A}=\left[\begin{array}{ccc}d_{2} d_{3} & 0 & 0 \\ 0 & d_{3} d_{1} & 0 \\ 0 & 0 & d_{1} d_{2}\end{array}\right]^{\prime}=\left[\begin{array}{ccc}d_{2} d_{3} & 0 & 0 \\ 0 & d_{3} d_{1} & 0 \\ 0 & 0 & d_{1} d_{2}\end{array}\right]$
This shows that adjoint of a diagonal matrix is a diagonal matrix.
Example 3. Calculate the adjoint of A, where

$$
A=\left[\begin{array}{rrr}
1 & 2 & 3 \\
1 & -1 & 2 \\
-2 & 1 & 1
\end{array}\right]
$$

Sol. Co-factor of $1,(1,1)$ th element

$$
=(-1)^{2}\left|\begin{array}{rr}
-1 & 2 \\
1 & 1
\end{array}\right|=(-1-2)=-3
$$

Co-factor of $2,(1,2)$ th element

$$
=(-1)^{3}\left|\begin{array}{rr}
1 & 2 \\
-2 & 1
\end{array}\right|=-(1+4)=-5
$$

Co-factor of $3,(1,3)$ th element

$$
=(-1)^{4}\left|\begin{array}{rr}
1 & -1 \\
-2 & 1
\end{array}\right|=(1-2)=-1
$$

Co-factor of $1,(2,1)$ th element

$$
=(-1)^{3}\left|\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right|=-(2-3)=1
$$

Co-factor of $-1,(2,2)$ th element

$$
=(-1)^{4}\left|\begin{array}{rr}
1 & 3 \\
-2 & 1
\end{array}\right|=(1+6)=7
$$

Co-factor of 2, (2, 3)th element

$$
=(-1)^{5}\left|\begin{array}{rr}
1 & 2 \\
-2 & 1
\end{array}\right|=-(1+4)=-5
$$

Co-factor of $-2,(3,1)$ th element

$$
=(-1)^{4}\left|\begin{array}{rr}
2 & 3 \\
-1 & 2
\end{array}\right|=(4+3)=7
$$

Co-factor of $1,(3,2)$ th element

$$
=(-1)^{5}\left|\begin{array}{ll}
1 & 3 \\
1 & 2
\end{array}\right|=-(2-3)=1
$$

Co-factor of $1,(3,3)$ th element

$$
=(-1)^{6}\left|\begin{array}{rr}
1 & 2 \\
1 & -1
\end{array}\right|=(-1-2)=-3
$$

\therefore Adj. of $A=\left[\begin{array}{rrr}-3 & -5 & -1 \\ 1 & 7 & -5 \\ 7 & 1 & -3\end{array}\right]^{\prime}=\left[\begin{array}{rrr}-3 & 1 & 7 \\ -5 & 7 & 1 \\ -1 & -5 & -3\end{array}\right]$.
1/10,28. Theorem. If A be a n-square matrix, then prove that sutefinal.
$A(\operatorname{adj} . A)=(\operatorname{adj} . A) A=|A| I_{n}$
(K.U. 1995 S)

where I_{n} denotes the unit matrix of order n.

Proof. Let $\mathrm{A}=\left[a_{i j}\right]$ be n-square matrix.
$\therefore \quad$ Adj $\mathrm{A}=\left[\mathrm{A}_{i j}\right]^{\prime}$, where $\mathrm{A}_{i j}$ is co-factor of $a_{i j}$ in $|\mathrm{A}|$

$$
=\left[\alpha_{i j}\right], \text { where } \alpha_{i j}=A_{j i}
$$

To find the product of A (adi. A)
(i, j)th element of A (adj. A)
$=$ sum of the products of the corresponding elements of the i th row of A and the jth col. of adj. A

$$
\begin{align*}
& =\left[a_{i 1} a_{i 2} \ldots a_{i n}\right]\left\{\begin{array}{c}
\alpha_{1 j} \\
\alpha_{2 j} \\
\alpha_{3 j} \\
\vdots \\
\alpha_{n j}
\end{array}\right\} \\
& =a_{i 1} \alpha_{1 j}+a_{j 2} \alpha_{2 j}+\ldots \ldots+a_{i n} \alpha_{n j} \\
& =a_{i 1} \mathrm{~A}_{j 1}+a_{i 2} \mathrm{~A}_{j 2}+\ldots \ldots+a_{i n} \mathrm{~A}_{j n} \tag{1}
\end{align*}
$$

Now we know from determinants that in a determinant $|A|$ if the elements of any row are multiplied by their corresponding co-factors and added, the result is $|\mathrm{A}|$, and if elements of any line are multiplied by the co-factors of any parallel line and added, then the result is zero.

Thus, R.H.S. of $(1)=0$ if $i \neq j$

$$
=|\mathrm{A}| \text { if } i=j
$$

Thus (i, j) th element of $A(\operatorname{adj} . A)=0(i \neq j)$

$$
=|\mathrm{A}| \text { if } i=j
$$

This shows that all the diagonal elements of $A(\operatorname{adj} . A)$ are each equal to $|\mathrm{A}|$ and non-diagonal elements are zero.

Hence $\mathrm{A}(\operatorname{adj} . \mathrm{A})=\left[\begin{array}{lllll}|\mathrm{A}| & 0 & 0 & \ldots & 0 \\ 0 & |\mathrm{~A}| & 0 & \ldots & 0 \\ 0 & 0 & |\mathrm{~A}| & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & \ldots & |\mathrm{~A}|\end{array}\right]$

$$
=|\mathrm{A}|\left[\begin{array}{lllll}
1 & 0 & 0 & & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]=|\mathrm{A}| \mathrm{I}_{n}
$$

Similarly,
(i, j)th element in (adj. A) A

$$
\left.\begin{array}{l}
=\left[\alpha_{i 1} \alpha_{i 2} \ldots \alpha_{i n}\right]\left[\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
\ldots \ldots . \\
\ldots \ldots \\
\ldots \ldots . \\
a_{n j}
\end{array}\right] \\
=\alpha_{i 1} a_{1 j}+\alpha_{i 2} a_{2 j}+\ldots+\alpha_{i n} a_{n j} \\
=\mathrm{A}_{1 i} a_{1 j}+\mathrm{A}_{2 i} a_{2 j}+\ldots+\mathrm{A}_{n i} a_{n j} \\
=a_{1 j} \mathrm{~A}_{1 i}+a_{2 j} \mathrm{~A}_{2 i}+\ldots+a_{n j} \mathrm{~A}_{n i} \\
=|\mathrm{A}|\} \quad \text { if } i=j \\
=0
\end{array}\right\} \quad \text { if } i \neq j,
$$

$\therefore \quad(\operatorname{adj} . \mathrm{A})(\mathrm{A})=|\mathrm{A}|\left[\begin{array}{ccccc}1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & 1\end{array}\right]=|\mathrm{A}| \mathrm{I}_{n}$
Hence $A(\operatorname{adj} . A)=(\operatorname{adj} \cdot A) A=|A| I_{n}$.
Cor. If A is a non-singular matrix of order n, then

$$
|\operatorname{adj} . A|=|A|^{n-1}
$$

Proof. $\because \quad$ A (adj. $A)=|A| I$
Taking determinant of both sides
$\therefore \quad|A(\operatorname{adj} . A)|=||A| I|$
or

$$
\begin{aligned}
& |\mathrm{A}||\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{n} \quad[\because|\mathrm{AB}|=|\mathrm{A}||\mathrm{B}|,|\mathrm{I}|=1] \\
& |\mathrm{A}| \neq 0, \text { dividing by }|\mathrm{A}| \\
& |\operatorname{adj} \mathrm{A}|=|\mathrm{A}|^{n-1} .
\end{aligned}
$$

But
Example 4. Find the adjoint of matrix

$$
\left[\begin{array}{lll}
2 & 1 & 3 \\
3 & 1 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

and verify the theorem $A($ adj. $A)=($ adj. $A) A=|A| I$.
(M.D.U. 1980 S ; K.U. 1995 A)

Sol. $|\mathrm{A}|=\left|\begin{array}{lll}2 & 1 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 3\end{array}\right|$
operate Col. 1-2 Col. 2 ; Col. 3-3 Col. 2

$$
=\left|\begin{array}{rrr}
0 & 1 & 0 \\
1 & 1 & -1 \\
-3 & 2 & -3
\end{array}\right|=-\left|\begin{array}{rr}
1 & -1 \\
-3 & -3
\end{array}\right|=-(-3-3)=6
$$

Co-factor of $2,(1,1)$ th element $\left.=\left|\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right|=3-4=-1\right)$
Co-factor of $1,(1,2)$ th element $=-\left|\begin{array}{ll}3 & 2 \\ 1 & 3\end{array}\right|=-(9-2)=-7$
Co-factor of $3,(1,3)$ th element $=\left|\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right|=6-1=5$
Co-factor of 3, (2, 1) th element $=-\left|\begin{array}{ll}1 & 3 \\ 2 & 3\end{array}\right|=-(3-6)=3$
Co-factor of 1, $(2,2)$ th element $=\left|\begin{array}{ll}2 & 3 \\ 1 & 3\end{array}\right|=6-3=3$
Co-factor of 2, (2, 3)th element $=-\left|\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right|=-(4-1)=-3$

Co-factor of $1,(3,1)$ th element $=\left|\begin{array}{ll}1 & 3 \\ 1 & 2\end{array}\right|=2-3=-1$
Co-factor of 2, (3, 2)th element $=-\left|\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right|=-(4-9)=5$
Co-factor of $3,(3,3)$ th element $=(-1)^{6}\left|\begin{array}{ll}2 & 1 \\ 3 & 1\end{array}\right|=2-3=-1$
$\therefore \quad$ Adj. $A=\left[\begin{array}{ccc}-1 & -7 & 5 \\ 3 & 3 & -3 \\ -1 & 5 & -1\end{array}\right]^{\prime}=\left[\begin{array}{rrr}-1 & 3 & -1 \\ -7 & 3 & 5 \\ 5 & -3 & -1\end{array}\right]$
$\mathrm{A}(\operatorname{adj} . \mathrm{A})=\left[\begin{array}{lll}2 & 1 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 3\end{array}\right]\left[\begin{array}{rrr}-1 & 3 & -1 \\ -7 & 3 & 5 \\ 5 & -3 & -1\end{array}\right]$
$=\left[\begin{array}{l}2 .(-1)+1 .(-7)+3 \cdot 52 \cdot 3+1 \cdot 3+3 \cdot(-3) 2 \cdot(-1)+1 \cdot 5+3 \cdot(-1) \\ 3 \cdot(-1)+1 .(-7)+2 \cdot 53 \cdot 3+1 \cdot 3+2 \cdot(-3) 3 \cdot(-1)+1 \cdot 5+2 \cdot(-1) \\ 1 .(-1)+2 .(-7)+3 \cdot 51 \cdot 3+2 \cdot 3+3 \cdot(-3) 1 \cdot(-1)+2 \cdot 5+3 \cdot(-1)\end{array}\right]$
$=\left[\begin{array}{lll}6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6\end{array}\right]=6\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=|A| I_{3}$
$\therefore \quad A(\operatorname{adj} . A)=|A| I_{3}$.
Similarly, it can be shown that (adj. A)A $=|A| \cdot I_{3}$
Hence the verification.
Example 5. Prove that adjoint of a unit matrix is a unit matrix.
Sol. Let I_{n} be the unit matrix of order n.
($i j$)th element of adj. $\mathrm{I}_{n}=\operatorname{Co}$-factor of $\left(j, i\right.$) th element in I_{n}

$$
=1 \text { or } 0 \text { according as } i=j \text { or } i \neq j
$$

$(\because$ In a unit matrix, co-factor of diagonal element is 1
whereas co-factor of non-diagonal element is zero)
Thus adj. $\mathrm{I}_{n}=\mathrm{I}_{n}$.
—Example 6.Prove that adj. $A^{\prime}=(\operatorname{adj} . A)^{\prime}$, where A is any square matrix.
Sol. Let A be any square matrix of order n, then adj. A^{\prime} and (adj. A)' are both square matrices of order n.
(i, j) th element of (adj. A)'
$=(j, i)$ th element of $($ adj. A)
$=$ the co-factor of (i, j) th element in the matrix A
$=$ the co-factor of (i, i) th element in A^{\prime}
$=(i, j)$ th element of adj. A^{\prime}

Hence adj. $\mathrm{A}^{\prime}=(\operatorname{adj} . \mathrm{A})^{\prime}$.

Example 7. If A is a symmetric matrix, then prove that adjoint A is also symmetric

Sol. Let A be a symmetric matrix, then $\mathrm{A}^{\prime}=\mathrm{A}$

$$
(\text { adj. A })^{\prime}=\text { adj. } \mathrm{A}^{\prime}
$$

(Prove as in Example 6)

$$
=\operatorname{adj} . \mathrm{A}
$$

$$
\left[\because \quad A^{\prime}=\mathrm{A}\right]
$$

$\therefore \quad(\operatorname{adj} . A)$ is a symmetric matrix.

EXERCISE 10 (e)

1. Define adjoint of a matrix.

* 2. Calculate the adjoints of the following matrices:
(i) $\left[\begin{array}{rrr}1 & 3 & 2 \\ 0 & -2 & 1 \\ 0 & 5 & 3\end{array}\right] \sim^{0}$ (ii) $\left[\begin{array}{rrr}3 & 5 & 7 \\ 2 & -3 & 1 \\ 1 & 1 & 2\end{array}\right]$
(iii) $\left[\begin{array}{ccc}2 & -1 & 5 \\ 1 & -2 & 3 \\ 4 & 1 & 2\end{array}\right]$

3. (a) Given a triangular matrix

$$
A=\left[\begin{array}{lll}
2 & 3 & 1 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

find adjoint matrix of A. Is adjoint A also a triangular matrix ?
(b) Given a symmetric matrix

$$
\mathrm{A}=\left[\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right]
$$

By finding the adjoint of A, show that adjoint of A is also a symmetric matrix.
*4. If

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 4 \\
1 & 4 & 3
\end{array}\right], I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Verify $A(\operatorname{adj} . A)=(\operatorname{adj} . A) A=|A| I_{3}$,
where $|A|=$ determinant of A.
(K.U. 1975 S, 76)

* 5. Find the adjoint matrix of

$$
A=\left[\begin{array}{lll}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and verify that

$$
A(\operatorname{adj} \cdot A)=(\operatorname{adj} \cdot A) A=|A| I
$$

where I is the identity matrix of order 3 .
(M.D.U. 1981 S)

Answers
2. (i) $\left[\begin{array}{ccc}1 & 1 & -1 \\ 0 & 3 & -1 \\ 0 & -5 & 2\end{array}\right]$
(ii) $\left[\begin{array}{rrr}-7 & -3 & 26 \\ -3 & -1 & 11 \\ 5 & 2 & -19\end{array}\right]$
3. (a) adj. $\mathbf{A}=\left[\begin{array}{ccr}1 & -3 & 5 \\ 0 & 2 & -4 \\ 0 & 0 & 2\end{array}\right]$, Yes
(b) $\left[\begin{array}{lll}b c-f^{2} & f g-c h & h f-b g \\ f g-c h & c a-g^{2} & g h-a f \\ h f-b g & g h-a f & a b-h^{2}\end{array}\right]$
which is also a symmetric matrix.

Inverse of a Square Matrix

Definition. Let A be an n-square matrix. If there exists an n-square matrix B such that

$$
\mathrm{AB}=\mathrm{BA}=\mathrm{I}_{n} \text {, then }
$$

the matrix A is said to be invertible and the matrix B is called the inverse of the matrix A :

Note 1. From the definition given above, it is very clear that if B is the inverse of A, then A is also the inverse of B.
2. A non-square matrix does not have any inverse.

Theorem. Inverse of a square matrix, if it exists is unique.
(M.D.U. 1980 S ; K.U. 1980)

Proof. Let A be any n-rowed square invertible matrix.
If possible, let B and C both be inverses of A.
\therefore

$$
\begin{equation*}
\mathrm{AB}=\mathrm{BA}=\mathrm{I}_{n} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{AC}=\mathrm{CA}=\mathrm{I}_{n} \tag{2}
\end{equation*}
$$

$[\because B$ is inverse of $A]$
$[\because C$ is inverse of $A]$
Since A, B, C are all square matrices of the same order n.
\therefore The product $C A B$ is defined and

$$
\begin{align*}
\mathrm{CAB} & =\mathrm{C}(\mathrm{AB})=\mathrm{CI}_{n} \tag{1}\\
& =\mathrm{C}
\end{align*}
$$

Again,

$$
\begin{align*}
\mathrm{CAB} & =(\mathrm{CA}) \mathrm{B}=\mathrm{I}_{n} \mathrm{~B} \tag{3}\\
& =\mathrm{B} \tag{2}
\end{align*}
$$

From (3) and (4), we get

$$
\begin{equation*}
B=C \tag{4}
\end{equation*}
$$

Thus, inverse of A is unique.
Note. The inverse of A shall, in general, be denoted by A^{-1}.

1930. Singular and Non-singular matrix

Def. A square matrix A is said to be singular or non-singular according $a s|A|=0$ or $|A|=0$.
gular.
For example, the matrix $\left[\begin{array}{ll}4 & 2 \\ 6 & 3\end{array}\right]$ is singuiar and $\left[\begin{array}{ll}1 & 7 \\ 9 & 2\end{array}\right]$ is non-sin

10.31. Theorem

The necessary and sufficient condition for a square matrix \mathbf{A} to possess the inverse is that $|A| \neq 0$ (i.e., A is non-singular).
(K.U. 1995 A, 92 ; M.D.U. 1980)

Proof. The condition is necessary. Given that \mathbf{A} is invertible (i.e., \mathbf{A} possesses inverse), to show that A is non-singular.
\because A possesses inverse.
$\therefore \quad$ Let B be the inverse of A

$$
\mathrm{AB}=\mathrm{BA}=\mathrm{I}_{n}
$$

[By def. of inverse]
Taking determinants, we get

$$
|\mathrm{AB}|=|\mathrm{BA}|=\left|\mathrm{I}_{n}\right|=1
$$

i.e,

$$
\begin{gathered}
|\mathbf{A}| \cdot|B|=1 \neq 0 \\
\text { But }|A| \text { and }|B| \text { are scalars (numbers) }
\end{gathered}
$$

$$
\therefore \quad|\mathbf{A}| \neq 0
$$

$\therefore \quad A$ is a non-singular matrix.
The condition is sufficient. Given that A is non-singular. To show that A has inverse.
$\because A$ is non-singular, $\therefore|A| \neq 0$
Consider the matrix $B=\frac{\text { adj. } A}{|A|}$
Now

$$
\begin{aligned}
A B & =A \cdot\left(\frac{\operatorname{adj} \cdot A}{|A|}\right)=\frac{1}{|A|}(\mathrm{A})(\operatorname{adj} . A) \\
& =\frac{1}{|A|}|\dot{A}| I_{n}=I_{n} \\
B A & =\left(\frac{\operatorname{adj} \cdot A}{|A|}\right) A=\frac{1}{|A|}(\operatorname{adj} . A)(A) \\
& =\frac{1}{|A|}|A| I_{n}=I_{n}
\end{aligned}
$$

Also

Thus, $\quad \mathrm{AB}=\mathrm{BA}=\mathrm{I}_{n}$
$\therefore \quad A$ is invertible and B is its inverse.

$$
\therefore \quad A^{-1}=\mathbf{B}=\frac{\text { adj. } A}{|A|} .
$$

Remember. If A is non-singular, then

$$
A^{-1}=\frac{\operatorname{adj} \cdot A}{|A|}
$$

Note. The above theorem gives us one of the methods to compute the inverse of a non-singular matrix. We illustrate the method by examples given below.

* Example 1. Find the inverse of matrix
where $a d-b c \neq 0 . \quad A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
Sol. Given matrix is

$$
\begin{aligned}
\mathrm{A} & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \therefore \quad|\mathrm{A}|=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right| \\
& =a d-b c \neq 0
\end{aligned}
$$

i.e., A is non-singular, \therefore A possesses inverse

$$
\begin{aligned}
\text { Adj. } \mathbf{A} & =\left[\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right]^{\prime}=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \\
\mathbf{A}^{-1} & =\frac{\operatorname{adj} . \mathrm{A}}{|\mathrm{~A}|}=\left[\begin{array}{cc}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a}{a d-b c}
\end{array}\right]
\end{aligned}
$$

$[\because|\mathrm{A}|=a d-b c]$
Remark. This example gives the inverse of every non-singular 2×2 matrix for different values of the element a, b, c, d.

Example 2. D is the diagonal matrix

$$
\left[\begin{array}{llll}
d_{1} & 0 & 0 & 0 \\
0 & d_{2} & 0 & 0 \\
0 & 0 & d_{3} & 0 \\
0 & 0 & 0 & d_{4}
\end{array}\right]
$$

where none of the elements $d_{1}, d_{2}, d_{3}, d_{4}$ is zero. Find D^{-1}. (M.D.U. 1991)

Sol.

$$
\begin{aligned}
\mathrm{D} & =\left[\begin{array}{llll}
d_{1} & 0 & 0 & 0 \\
0 & d_{2} & 0 & 0 \\
0 & 0 & d_{3} & 0 \\
0 & 0 & 0 & d_{4}
\end{array}\right] \\
|\mathrm{D}| & =\left|\begin{array}{llll}
d_{1} & 0 & 0 & 0 \\
0 & d_{2} & 0 & 0 \\
0 & 0 & d_{3} & 0 \\
0 & 0 & 0 & d_{4}
\end{array}\right|
\end{aligned}
$$

$$
=d_{1} d_{2} d_{3} d_{4}=0 \quad\left[\because \quad \text { none of } d_{1}, d_{2}, d_{3}, d_{4} \text { is zero }\right]
$$

Now co-factor of $d_{1}=(-1)^{2}\left|\begin{array}{lll}d_{2} & 0 & 0 \\ 0 & d_{3} & 0 \\ 0 & 0 & d_{4}\end{array}\right|=d_{2} d_{3} d_{4}$.
Similarly, co-factors of d_{2}, d_{3}, d_{4} are respectively $d_{1} d_{3} d_{4} ; d_{1} d_{2} d_{4}$;
$\therefore \quad \mathrm{A}$ is non-singular and A^{-1} exists

Hence if $\mathrm{D}=$ diag. $\left[d_{1}, d_{2}, d_{3}, d_{4}\right]$, where $d_{1} d_{2} d_{3} d_{4} \neq 0$

$$
\text { then } \quad D^{-1}=\text { diag. }\left[d_{1}^{-1}, d_{2}^{-1}, d_{3}^{-1}, d_{4}^{-1}\right]
$$

Remark. The method is quite general and can be extended to a non-sinqular diagonal matrix of any order.

Example 3. Find the inverse of the matrix A given by
$\sim A=\left[\begin{array}{rrr}9 & 5 & 6 \\ 7 & -1 & 8 \\ 3 & 4 & 2\end{array}\right]$. (Type K.U. 1994 A ; M.D.U. 1979 S)
Sol. Here

$$
|\mathrm{A}|=\left|\begin{array}{rrr}
9 & 5 & 6 \\
7 & -1 & 8 \\
3 & 4 & 2
\end{array}\right|
$$

Operate $\mathrm{R}_{1}-3 . \mathrm{R}_{3}$,
$\therefore \quad|\dot{\mathrm{A}}|=\left|\begin{array}{rrr}0 & -7 & 0 \\ 7 & -1 & 8 \\ 3 & 4 & 2\end{array}\right|$

Expand by Row 1

$\therefore \quad|\mathrm{A}|=-(-7)\left|\begin{array}{ll}7 & 8 \\ 3 & 2\end{array}\right|=7(14-24)=-70-0$.
i.e.

$$
\left.\begin{array}{rl}
\text { adj. } A & =\left[\begin{array}{rrr}
-34 & 10 & 31 \\
14 & 0 & -21 \\
46 & -30 & -44
\end{array}\right]^{\prime} \quad \begin{array}{r}
\text { adj. } A
\end{array} \begin{array}{rl}
\text { (Replacing each element } \\
\text { by its co-factor) }
\end{array} \\
\text { Hence } \quad A^{-1} & =\frac{\text { adj. } A}{|A|}
\end{array} \begin{array}{rrr}
14 & 0 & -36 \\
31 & -21 & -44
\end{array}\right] .\left[\begin{array}{rrr}
\frac{-34}{-70} & \frac{14}{-70} & \frac{46}{-70} \\
\frac{10}{-70} & \frac{100}{-70} & \frac{-30}{-70} \\
\frac{31}{-70} & \frac{21}{-70} & \frac{-44}{-70}
\end{array}\right] \quad\left[\begin{array}{rrr}
\frac{17}{35} & \frac{-1}{5} & \frac{-23}{35} \\
\frac{-1}{7} & 0 & \frac{3}{7} \\
\frac{-31}{70} & \frac{3}{10} & \frac{22}{35}
\end{array}\right] .
$$

i.e.,

10.32. Theorem Entesmal

(a) If A is invertible, then so is A^{-1} and $\left(A^{-1}\right)^{-1}=A$.
(K.U. 1976)
(b) If A and B are square matrices of order n, then $A B$ is invertible if and only if A and B are invertible and then
$(A B)^{-1}=B^{-1} A^{-1}$.
(M.D.U. 1981 S ; K.U. 1989)

Proof. (a) As A is invertible $\therefore \quad \mathrm{A}^{-1}$ exists

$$
\mathrm{AA}^{-1}=\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I} .
$$

This shows (by def.) that A^{-1} is also invertible and inverse of A^{-1} is A
i.e.,

$$
\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}
$$

(b) $\quad|\mathrm{AB}|=|\mathrm{A}| \cdot|\mathrm{B}|$
$\therefore \quad|A B| \neq 0$, if and only if $|A| \neq 0$ and $|B| \neq 0$
i.e., $A B$ is non-singular, if and only if A and B are both non-singular, which is the same as
$A B$ is invertible if and only if A and B are invertible.
Let A and B be invertible and their inverse be A^{-1} and B^{-1}. All these matrices $\mathrm{A}, \mathrm{B}, \mathrm{A}^{-1}, \mathrm{~B}^{-1}$ are squared matrices of same order n.

$$
\begin{aligned}
\text { Now }(A B)\left(B^{-1} A^{-1}\right) & =A\left(B B^{-1}\right) A^{-1} \\
& =(A I) A^{-1}=A A^{-1}=I \\
\text { Again }\left(B^{-1} A^{-1}\right)(A B) & =B^{-1}\left(A^{-1} A\right) B=B^{-1} I B \\
& =B^{-1} B=I
\end{aligned}
$$

$\therefore \quad \mathrm{A}^{-1}, \mathrm{~B}^{-1}$ and $(\mathrm{AB})^{-1}$ all exist.
Also we know that for every non-singular matrix P,

$$
\begin{align*}
& \qquad P^{-1}=\frac{\text { adj. } P}{|P|} \\
& \quad \begin{array}{rl}
\therefore \quad \text { adj. } P & =|P| P^{-1} \\
\text { Putting } P & A B \text { in }(1) \text {, we have } \\
\text { adj. }(A B) & =|A B|(A B)^{-1} \\
& =|A||B| B^{-1} A^{-1} \text { (Reversal Law) } \\
& =|A||B| \frac{\text { adj. } B}{|B|} \frac{\text { adj. } A}{|A|} \\
& =(\text { adj. } B)(\text { adj. } A) .
\end{array} \tag{1}
\end{align*}
$$

EXERCISE 10 (f)

1. Define the inverse of a matrix, and show that whenever it exists, it is unique.
2. Prove that a square matrix A is invertible if and on!y if, $|A| \neq 0$, where $|A|$ denotes the determinant of A .
(K.U. 1973)
3. Prove that the inverse of product of two matrices is equal to the product of their inverses but in reverse order.
(M.D.U. 1981 S)
4. Calculate the inverse of the following matrices whenever exists :
(i) $\left[\begin{array}{rrr}3 & 5 & 7 \\ 2 & -3 & 1 \\ 1 & 1 & 2\end{array}\right]$
(ii) $\left[\begin{array}{rrr}1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4\end{array}\right]$
(iii) $\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 2 \\ 0 & 1 & 2\end{array}\right]$
(M.D.U. 1981)
(K.U. 1991 S)
5. If $\mathrm{A}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$

Show that $\mathrm{A}^{-1}=\mathrm{A}$.
6. Let A and B be invertible square matrices of order n. Does $(\mathrm{A}+\mathrm{B})^{-1}$ exist ? Justify by giving example.
7. If B is non-singular, prove that

$$
\left|\mathrm{B}^{-1} \mathrm{AB}\right|=|\mathrm{A}|
$$

A and B being square matrices of the same order.
8. If A is an n-square non-singular matrix, prove that

$$
|\operatorname{adj} \cdot \mathrm{A}|=|\mathrm{A}|^{n-1} .
$$

[Hint. Reproduce Ex. 2 Page 301.]
9. If the non-singular matrix A is symmetric, prove that A^{-1} is also symmetric.
10. If the matrices A and B commute, then A^{-1} and B^{-1} are also commute.
4. $(i)\left[\begin{array}{rrr}7 & 3 & -26 \\ 3 & 1 & -11 \\ -5 & -2 & 19\end{array}\right]$

Answers

$$
\text { 6. } A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\text { (ii) }\left[\begin{array}{rrr}
3 & 1 & 3 / 2 \\
-5 / 4 & -1 / 4 & -3 / 4 \\
-1 / 4 & -1 / 4 & -1 / 4
\end{array}\right] \quad B=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

7. Not necessarily.

ORTHOGONAL AND UNITARY MATRICES

10.34. Orthogonal Matrices

A square matrix A is said to be orthogonal if $A^{\prime} A=A A^{\prime}=I$.
i.e., if

$$
\mathrm{A}^{\prime}=\mathrm{A}^{-1}
$$

For example, the matrices $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$,

$$
\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right],\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

are orthogonal.
[One can verify $\mathrm{AA}^{\prime}=I$ in each case.]
Every identity matrix is orthogonal.
10.35. The determinant of an orthogonal matrix is ± 1

For, if A is an orthogonal matrix, then

$$
\begin{array}{lccc}
& \mathrm{AA}^{\prime}=\mathrm{I} \\
\Rightarrow & \left|\mathrm{AA}^{\prime}\right|=|\mathrm{I}| & \\
\Rightarrow & |\mathrm{A}| \cdot\left|\mathrm{A}^{\prime}\right|=\mathrm{I} & (\because|\mathrm{AB}|=|\mathrm{A}| \cdot|\mathrm{B}| \text { and }|\mathrm{I}|=1) \\
\Rightarrow & |\mathrm{A}| \cdot|\mathrm{A}|=1 & & \\
\Rightarrow & |\mathrm{~A}|^{2}=1 \Rightarrow & |\mathrm{~A}|= \pm 1 .
\end{array}
$$

An orthogonal matrix is said to be proper or improper according as its determinant is 1 or -1 .

Note. (i) If A is an orthogonal matrix with $|A|=1$, then each element of A is equal to its cofactor in $|\mathrm{A}|$.
(ii) If A is an orthogonal matrix with $|A|=-1$ then each element of A is equal to the negative of its cofactor in $|\mathrm{A}|$.

The inverse and transpose of an orthogonal matrix are orthogonal.
Proof. Let A be an orthogonal matrix so that

$$
\mathrm{AA}^{\prime}=\mathrm{I}=\mathrm{A}^{\prime} \mathbf{A}
$$

Taking inverses, we have
$\left(\mathrm{AA}^{\prime}\right)^{-1}=\mathrm{I}^{-1}$

$$
\begin{array}{ll}
\Rightarrow & \left(A^{\prime}\right)^{-1} \cdot A^{-1}=I \\
\Rightarrow & \left(A^{-1}\right)^{\prime} \cdot A^{-1}=I \\
\Rightarrow & A^{-1} \text { is orthogonal. } \\
\text { Also, } \quad{A A^{\prime}}^{\prime}=I \Rightarrow\left(A^{\prime}\right)^{\prime} A^{\prime}=I \Rightarrow A^{\prime} \text { is orthogonal. }
\end{array}
$$

10.37. Theorem

The product of two orthogonal matrices of the same order is orthogonal.
(K.U. 1991)

Proof. Let A and B be two orthogonal matrices of the same order so that

$$
\mathrm{A}^{\prime} \mathrm{A}=\mathrm{AA}^{\prime}=\mathrm{I} \text { and } \mathrm{B}^{\prime} \mathrm{B}=\mathrm{BB}^{\prime}=\mathrm{I}
$$

Now, $(A B)^{\prime}(A B)=\left(B^{\prime} A^{\prime}\right)(A B)=B^{\prime}\left(A^{\prime} A\right) B$

$$
=\mathrm{B}^{\prime} \mathrm{IB}=\mathrm{B}^{\prime} \mathrm{B}=\mathrm{I}
$$

Hence $A B$ is orthogonal.
Example 1. If A is a real skew-symmetric matrix such that $A^{2}+I=O$, then A is orthogonal and is of even order.

Sol. Since A is real skew-symmetric matrix, we have

$$
\begin{array}{ll}
& \mathrm{A}^{\prime}=-\mathrm{A} \\
\Rightarrow & \mathrm{AA}^{\prime}=-\mathrm{AA} \\
\Rightarrow & \mathrm{AA}^{\prime}=-\mathrm{A}^{2} \\
\Rightarrow & \mathrm{AA}^{\prime}=\mathrm{I} \\
\Rightarrow & \mathrm{~A} \text { is orthogonal. }
\end{array} \quad\left(\because \mathrm{A}^{2}+\mathrm{I}=\mathrm{O} \Rightarrow-\mathrm{A}^{2}=\mathrm{I}\right)
$$

Also, $\quad\left|\mathrm{AA}^{\prime}\right|=|\mathrm{A}|^{2}=1$
$\Rightarrow \quad|A| \neq 0$.
Since A is skew-symmetric and $|A| \neq 0$.
$\therefore \mathrm{A}$ is of even order.
$[\because$ By Ex. 3. Page 284 ; Determinant of a skew-symmetric matrix of odd order is always zero].

Example 2. If A and B are two non-singular matrices of the same order such that $A A^{\prime}=B B^{\prime}$, show that there exists an orthogonal matrix P such that $A=B P$.

Sol. Since $\quad \mathrm{AA}^{\prime}=\mathrm{BB}^{\prime}$,
A and B must be of the same order.

$$
\begin{array}{rlrl}
\text { Let } & A & =B P \\
\Rightarrow & P & =B^{-1} A \quad\left(\because B \text { is non-singular, } \therefore \quad B^{-1} \text { exists }\right) \\
\text { Now, } \quad & & P P^{\prime} & =\left(B^{-1} A\right)\left(B^{-1} A\right)^{\prime} \\
& & =\left(B^{-1} A\right)\left(A^{\prime}\left(B^{-1}\right)^{\prime}\right) \\
& & =B^{-1}\left(A A^{\prime}\right)\left(B^{\prime}\right)^{-1} \\
& & =B^{-1}\left(B B^{\prime}\right)\left(B^{\prime}\right)^{-1} \\
& & =\left(B^{\prime-1} B\right)\left(\left(B^{\prime}\right)\left(B^{\prime}\right)^{-1}\right)=I \cdot I=I \quad\left(\because A^{\prime} A=B B^{\prime}\right)
\end{array}
$$

$\Rightarrow P$ is orthogonal.
Hence, there exists an orthogonal matrix

$$
\mathrm{P}\left(=\mathrm{B}^{-1} \mathrm{~A}\right) \text { such that } \mathrm{A}=\mathrm{BP} .
$$

10.38. Unitary Matrix

A square matrix A is said to be unitary if $A^{\theta} A=I=A A^{\theta}$.

i.e., \quad iff $A^{\theta}=A^{-1}$

For example, $\quad \mathrm{A}=\frac{1}{2}\left[\begin{array}{rr}1+i & -1+i \\ 1+i & 1-i\end{array}\right]$ is a unitrary matrix.
For,

$$
\begin{aligned}
\mathrm{A}^{\theta} \mathrm{A} & =\frac{1}{2}\left[\begin{array}{rr}
1-i & -1-i \\
-1-i & 1+i
\end{array}\right] \cdot \frac{1}{2}\left[\begin{array}{rr}
1+i & -1+i \\
1+i & 1-i
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]=\mathrm{I}
\end{aligned}
$$

Note. If each element of A is real, then $\bar{A}=A$

$$
\begin{aligned}
A^{\theta} & =A^{\prime} \\
A^{\theta} A & =I \Rightarrow A^{\prime} A=I
\end{aligned}
$$

\therefore Unitary matrix over R is an othrogonal matrix.

10,39. Theorem

(i) The transpose of a unitary matrix is unitary.
(ii) Conjugate of a unitary matrix is unitary.
(iii) Conjugate transpose of a unitary matrix is unitary.
(iv) Inverse of a unitary matrix is unitary.
(K.U. $1989 \mathrm{~S}, 90 \mathrm{~S}$)
(v) Product of two unitary matrices is unitary.
(vi)-The determinant of a unitary matrix has absolute value 1 .
(K.U. 1989 S, 90 S)

Proof. (i) Let A be a unitary matrix.
$\therefore \quad A^{\theta} \mathrm{A}=\mathrm{I}$
$\Rightarrow \quad\left(A^{\theta} A\right)^{\prime}=I^{\prime}$
$\Rightarrow \quad A^{\prime}\left(A^{\theta}\right)^{\prime}=I$
$\Rightarrow \quad A^{\prime}\left(\overline{\mathbf{A}^{\prime}}\right)^{\prime}=I \quad \Rightarrow \quad A^{\prime}\left(A^{\prime}\right)^{\theta}=I$
$\Rightarrow \quad A^{\prime}$ is unitary.
(ii) Proof is simple.
(iii) Proof is simple.
(iv) If \mathbf{A} is a unitary matrix, then

$$
A^{\theta} A=I
$$

$$
\begin{array}{rlrl}
& \Rightarrow & \left(\mathrm{A}^{\theta} \mathrm{A}\right)^{-1} & =\mathrm{I}^{-1} \\
& \Delta^{-1}\left(\mathrm{~A}^{\theta}\right)^{-1} & =\mathrm{I}
\end{array}
$$

$\Rightarrow \quad A^{-1}\left(A^{\theta}\right)^{-1}=I$
$\Rightarrow \quad A^{-1}\left(A^{-1}\right)^{\theta}=I$
$\Rightarrow \mathrm{A}^{-1}$ is unitary.
(v) Let A, B be two unitary matrices.
$\therefore \quad A^{\theta} A=I=A A^{\theta}$

